Major discoveries


 

Immunopharmacology of T cell tolerance

We discovered that adoptive transfer of autoreactive interleukin-2-producing T cells can cause organ-specific autoimmunity. During my first steps as a principal investigator, in Madrid, Spain (1989-1993), my team observed that interleukin-2 can break peripheral T cell tolerance by reversing the anergy of self-reactive T lymphocytes, hence explaining the mechanism through which high-dose interleukin-2 stimulates anticancer immunity. We also found that pertussis toxin-inhibitable receptors regulate the activation-induced cell death of innate and cognate immune effectors. Moreover, we discovered that exogenous (i.e. pharmacologically administered) or endogenous (i.e. stress-induced) glucocorticoids limit the production of cytokines and cause the deletion of activated T cells in vivo, thereby mediating strong immunosuppressive effects.

Principal references:

  • Krömer G, Sundick RS, Schauenstein K, Hála K, Wick G. Analysis of lymphocytes infiltrating the thyroid gland of Obese strain chickens. J Immunol. 1985 Oct;135(4):2452-7.
  • Andreu-Sanchez JL, Moreno de Alboran IM, Marcos MA, Sanchez-Movilla A, Martinez-A C, Kroemer G. Interleukin 2 abrogates the nonresponsive state of T cells expressing a forbidden T cell receptor repertoire and induces autoimmune disease in neonatally thymectomized mice. J Exp Med. 1991 Jun 1;173(6):1323-9.
  • Kroemer G, Martinez-A C. The fail-safe paradigm of immunological self-tolerance. Lancet 1991; 338:1246-1249.
  • Gonzalo JA, Gonzalez-Garcia A, Martinez-A C, Kroemer G. Glucocorticoid-mediated control of the activation and clonal deletion of peripheral T cells in vivo. J Exp Med. 1993 May 1;177(5):1239-46
  • Wick G, Hu Y, Schwarz S, Kroemer G. Immunoendocrine communication via the hypothalamo-pituitary-adrenal axis in autoimmune diseases. Endocr Rev. 1993 Oct;14(5):539-63.
  • Ramirez R, Carracedo J, Zamzami N, Castedo M, Kroemer G. Pertussis toxin inhibits activation-induced cell death of human thymocytes, pre-B leukemia cells and monocytes. J Exp Med. 1994 Sep 1;180(3):1147-52.
  • Pol JG, Caudana P, Paillet J, Piaggio E, Kroemer G. Effects of interleukin-2 in immunostimulation and immunosuppression. J Exp Med. 2020 Jan 6;217(1):e20191247.

 


Mitochondrial control of cell death

In Paris/Villejuif (France), from the end of 1993, my team found that, in many instances of regulated cell death, mitochondrial membrane permeabilization constitutes the point-of-no-return of the lethal process. This discovery has initiated a scientific revolution, leading to an operational redefinition of apoptosis (the best-characterized modality of regulated cell death in humans), changing the method of apoptosis detection, and conditioning the theoretical framework allowing for the ordering of pro-apoptotic signaling molecules. Instead of considering apoptosis as a process dominated by proteases (caspases) and nucleases, apoptosis is now viewed as a process that is largely controlled by mitochondria. We demonstrated that multiple distinct lethal signals converge on mitochondria, which then undergo membrane permeabilization, resulting in the release of activators of catabolic hydrolases and the cessation of essential bioenergetic functions, ultimately causing cellular demise. This discovery has had far-reaching implications for the therapeutic manipulation of cell death, including the induction of cell death in cancer cells, which can be achieved by directly triggering mitochondrial permeabilization, as well as for the prevention of unwarranted cell death, for instance in the context of ischemia or acute intoxication, which only can be achieved when targeting pre-mitochondrial or mitochondrial (but not post-mitochondrial) events.
We explored the fine mechanisms of mitochondrial cell death control, as well as the molecular pathways that explain the inhibition of cell death in cancer cells, upstream or at the level of mitochondria. We reported that pro- and anti-apoptotic proteins of the BCL2 family regulate mitochondrial membrane permeability and this regulation involves physical and functional interactions with proteins from the ATP synthasome, a molecular complex comprising adenine nucleotide translocator, F1-ATPase, phosphate carrier and lipids. We also discovered, cloned and characterized the mitochondrial apoptosis-inducing factor (AIF, official gene name: AIFM1), which turned out to play a major role in the assembly of the respiratory chain complex I, in caspase-independent neuronal cell death, for example in the context of neonatal asphyxiation, as well as in sudden cardiac death. Finally, we demonstrated that genetic or pharmacological targeting of mitochondria including respiratory chain complex I has potent anticancer effects.

Principal references:

  • Zamzami N, Marchetti P, Castedo M, Zanin C, Vayssiere JL, Petit PX, Kroemer G. Reduction in mitochondrial potential constitutes an early irreversible step of programmed lymphocyte death in vivo. J Exp Med. 1995 May 1;181(5):1661-72.
  • Zamzami N, Marchetti P, Castedo M, Decaudin D, Macho A, Hirsch T, Susin SA, Petit PX, Mignotte B, Kroemer G. Sequential reduction of mitochondrial transmembrane potential and generation of reactive oxygen species in early programmed cell death. J Exp Med. 1995 Aug 1;182(2):367-77. 
  • Kroemer G, Petit P, Zamzami N, Vayssière JL, Mignotte B. The biochemistry of programmed cell death. FASEB J. 1995 Oct;9(13):1277-87. 
  • Zamzami N, Susin SA, Marchetti P, Hirsch T, Gomez-Monterrey I, Castedo M, Kroemer G. Mitochondrial control of nuclear apoptosis. J Exp Med. 1996 Apr 1;183(4):1533-44. 
  • Marchetti P, Castedo M, Susin SA, Zamzami N, Hirsch T, Macho A, Haeffner A, Hirsch F, Geuskens M, Kroemer G. Mitochondrial permeability transition is a central coordinating event of apoptosis. J Exp Med. 1996 Sep 1;184(3):1155-60. 
  • Susin SA, Zamzami N, Castedo M, Hirsch T, Marchetti P, Macho A, Daugas E, Geuskens M, Kroemer G. Bcl-2 inhibits the mitochondrial release of an apoptogenic protease. J Exp Med. 1996 Oct 1;184(4):1331-41. 
  • Kroemer G. The proto-oncogene Bcl-2 and its role in regulating apoptosis. Nat Med. 1997 Jun;3(6):614-20. 
  • Kroemer G, Zamzami N, Susin SA. Mitochondrial control of apoptosis. Immunol Today. 1997 Jan;18(1):44-51. 
  • Susin SA, Zamzami N, Castedo M, Daugas E, Wang HG, Geley S, Fassy F, Reed JC, Kroemer G. The central executioner of apoptosis: multiple connections between protease activation and mitochondria in Fas/APO-1/CD95- and ceramide-induced apoptosis. J Exp Med. 1997 Jul 7;186(1):25-37. 
  • Marzo I, Brenner C, Zamzami N, Susin SA, Beutner G, Brdiczka D, Remy R, Xie ZH, Reed JC, Kroemer G. The permeability transition pore complex: a target for apoptosis regulation by caspases and Bcl-2-related proteins. J Exp Med. 1998 Apr 20;187(8):1261-71. 
  • Green D, Kroemer G. The central executioners of apoptosis: caspases or mitochondria? Trends Cell Biol. 1998 Jul;8(7):267-71. 
  • Susin SA, Zamzami N, Kroemer G. Mitochondria as regulators of apoptosis: doubt no more. Biochim Biophys Acta. 1998 Aug 10;1366(1-2):151-65. 
  • Marzo I, Brenner C, Zamzami N, Jurgensmeier JM, Susin SA, Vieira HL, Prevost MC, Xie Z, Matsuyama S, Reed JC, Kroemer G. Bax and adenine nucleotide translocator cooperate in mitochondrial control of apoptosis. Science. 1998 Sep 25;281(5385):2027-31. 
  • Susin SA, Lorenzo HK, Zamzami N, Marzo I, Brenner C, Larochette N, Prevost MC, Alzari PM, Kroemer G. Mitochondrial release of caspase-2 and -9 during the apoptotic process. J Exp Med. 1999 Jan 18;189(2):381-94. 
  • Susin SA, Lorenzo HK, Zamzami N, Marzo I, Snow BE, Brothers GM, Mangion J, Jacotot E, Costantini P, Loeffler M, Larochette N, Goodlett DR, Aebersold R, Siderovski DP, Penninger JM, Kroemer G. Molecular characterization of mitochondrial apoptosis-inducing factor. Nature. 1999 Feb 4;397(6718):441-6. 
  • Daugas E, Susin SA, Zamzami N, Ferri KF, Irinopoulou T, Larochette N, Prevost MC, Leber B, Andrews D, Penninger J, Kroemer G. Mitochondrio-nuclear translocation of AIF in apoptosis and necrosis. FASEB J. 2000 Apr;14(5):729-39. 
  • Kroemer G, Reed JC. Mitochondrial control of cell death. Nat Med. 2000 May;6(5):513-9. 
  • Costantini P, Jacotot E, Decaudin D, Kroemer G. Mitochondrion as a novel target of anticancer chemotherapy. J Natl Cancer Inst. 2000 Jul 5;92(13):1042-53. 
  • Brenner C, Kroemer G. Mitochondria--the death signal integrators. Science. 2000 Aug 18;289(5482):1150-1. 
  • Susin SA, Daugas E, Ravagnan L, Samejima K, Zamzami N, Loeffler M, Costantini P, Ferri KF, Irinopoulou T, Prevost MC, Brothers G, Mak TW, Penninger J, Earnshaw WC, Kroemer G. Two distinct pathways leading to nuclear apoptosis. J Exp Med. 2000 Aug 21;192(4):571-80. 
  • Joza N, Susin SA, Daugas E, Stanford WL, Cho SK, Li CY, Sasaki T, Elia AJ, Cheng HY, Ravagnan L, Ferri KF, Zamzami N, Wakeham A, Hakem R, Yoshida H, Kong YY, Mak TW, Zuniga-Pflucker JC, Kroemer G, Penninger JM. Essential role of the mitochondrial apoptosis-inducing factor in programmed cell death. Nature. 2001 Mar 29;410(6828):549-54. 
  • Ravagnan L, Gurbuxani S, Susin SA, Maisse C, Daugas E, Zamzami N, Mak T, Jaattela M, Penninger JM, Garrido C, Kroemer G. Heat-shock protein 70 antagonizes apoptosis-inducing factor. Nat Cell Biol. 2001 Sep;3(9):839-43. 
  • Ye H, Cande C, Stephanou NC, Jiang S, Gurbuxani S, Larochette N, Daugas E, Garrido C, Kroemer G, Wu H. DNA binding is required for the apoptogenic action of apoptosis inducing factor. Nat Struct Biol. 2002 Sep;9(9):680-4. 
  • Cande C, Cecconi F, Dessen P, Kroemer G. Apoptosis-inducing factor (AIF): key to the conserved caspase-independent pathways of cell death? J Cell Sci. 2002 Dec 15;115(Pt 24):4727-34. 
  • Penninger JM, Kroemer G. Mitochondria, AIF and caspases - rivaling for cell death execution. Nat Cell Biol. 2003 Feb;5(2):97-9. 
  • Green DR, Kroemer G. Pathophysiology of mitochondrial cell death. Science, 2004 Jul 30;305(5684):626-9. 
  • Cande C, Vahsen N, Kouranti I, Schmitt E, Daugas E, Spahr C, Luban J, Kroemer RT, Giordanetto F, Garrido C, Penninger JM, Kroemer G. AIF and cyclophilin A cooperate in apoptosis-associated chromatinolysis. Oncogene. 2004 Feb 26;23(8):1514-21. 
  • Perfettini JL, Kroemer RT, Kroemer G. Fatal liaisons of p53 with Bax and Bak. Nat Cell Biol. 2004 May;6(5):386-8. 
  • Kroemer G, Martin SJ. Caspase-independent cell death. Nat Med. 2005 Jul;11(7):725-30. 
  • Vahsen N, Cande C, Dupaigne P, Giordanetto F, Kroemer RT, Herker E, Scholz S, Modjtahedi N, Madeo F, Le Cam E, Kroemer G. Physical interaction of apoptosis-inducing factor with DNA and RNA. Oncogene. 2006 Mar 16;25(12):1763-74. 
  • Kroemer G, Galluzzi L, Brenner C. Mitochondrial membrane permeabilization in cell death. Physiol Rev. 2007 Jan;87(1):99-163. 
  • Galluzzi L, Kroemer G. Mitochondrial apoptosis without VDAC. Nat Cell Biol. 2007 May;9(5):487-9. 
  • Zhu C, Wang X, Deinum J, Huang Z, Gao J, Modjtahedi N, Neagu MR, Nilsson M, Eriksson PS, Hagberg H, Luban J, Kroemer G, Blomgren K. Cyclophilin A participates in the nuclear translocation of apoptosis-inducing factor in neurons after cerebral hypoxia-ischemia. J Exp Med. 2007 Aug 6;204(8):1741-8. 
  • Kroemer G, Pouyssegur J. Tumor cell metabolism: cancer's Achilles' heel. Cancer Cell. 2008 Jun;13(6):472-82. 
  • Buttner S, Ruli D, Vogtle FN, Galluzzi L, Moitzi B, Eisenberg T, Kepp O, Habernig L, Carmona-Gutierrez D, Rockenfeller P, Laun P, Breitenbach M, Khoury C, Frohlich KU, Rechberger G, Meisinger C, Kroemer G , Madeo F ( Corresponding author). A yeast BH3 domain-containing protein mediates the mitochondrial pathway of apoptosis. EMBO J. 2011 Jun 14;30(14):2779-92. 
  • Green DR, Galluzzi L, Kroemer G. Mitochondria and the autophagy-inflammation-apoptosis axis in cell death and organismal aging. Science 2011 Aug 26;333(6046):1109-1112. 
  • Galluzzi L, Bravo-San Pedro JM, Kroemer G. Organelle-specific initiation of cell death. Nat Cell Biol. 2014 Aug 1;16(8):728-36. 
  • Green DR, Galluzzi L, Kroemer G. Cell biology. Metabolic control of cell death. Science. 2014 Sep 19;345(6203):1250256. 
  • Porporato PE, Filigheddu N, Pedro JMB, Kroemer G , Galluzzi L. ( Corresponding author). Mitochondrial metabolism and cancer. Cell Res. 2018 Mar;28(3):265-280. 
  • Marchi S, Corricelli M, Branchini A, Vitto VAM, Missiroli S, Morciano G, Perrone M, Ferrarese M, Giorgi C, Pinotti M, Galluzzi L, Kroemer G, Pinton P. Akt-mediated phosphorylation of MICU1 regulates mitochondrial Ca2+ levels and tumor growth. EMBO J. 2019 Jan 15;38(2). pii: e99435. 
  • Sica V, Bravo-San Pedro JM, Izzo V, Pol J, Pierredon S, Enot D, Durand S, Bossut N, Chery A, Souquere S, Pierron G, Vartholomaiou E, Zamzami N, Soussi T, Sauvat A, Mondragón L, Kepp O, Galluzzi L, Martinou JC, Hess-Stumpp H, Ziegelbauer K, Kroemer G , Maiuri MC. ( Corresponding and lead author). Lethal poisoning of cancer cells by respiratory chain inhibition plus dimethyl α-ketoglutarate. Cell Rep. 2019 Apr 16;27(3):820-834.e9.
  • Rao S, Mondragón L, Pranjic B, Hanada T, Stoll G, Köcher T, Zhang P, Jais A, Lercher A, Bergthaler A, Schramek D, Haigh K, Sica V, Leduc M, Modjtahedi N, Pai TP, Onji M, Uribesalgo I, Hanada R, Kozieradzki I, Koglgruber R, Cronin SJ, She Z, Quehenberger F, Popper H, Kenner L, Haigh JJ, Kepp O, Rak M, Cai K, Kroemer G , Penninger JM. ( Corresponding author). AIF-regulated oxidative phosphorylation supports lung cancer development. Cell Res. 2019 Jul;29(7):579-591.
  • Tang D, Chen X, Kroemer G. Cuproptosis: a copper-triggered modality of mitochondrial cell death. Cell Res. 2022 May;32(5):417-418.

 

Mechanisms of HIV-1-induced cell death 

Together with our collaborators, we launched the idea that cell death induced by human immunodeficiency virus-1 (HIV-1) is not just the passive result of the viral life cycle but that it involves an active contribution of the infected host cell. We discovered that HIV causes mitochondrial dysfunction in circulating lymphocytes from infected patients and that HIV-1 can induce apoptosis via a variety of mechanisms, one of which involves Vpr, a soluble HIV-1 encoded accessory protein that targets mitochondria. We also found that vMIA, a protein from human cytomegalovirus (hCMV), can specifically target mitochondria to inhibit apoptosis, hence establishing that a range of different intracellular pathogens manipulate the mitochondrial pathway of apoptosis. In vitro studies unraveled the sequential activation of a defined series of kinases and transcription factors upon HIV-1 induced cell-to-cell fusion, leading to syncytial apoptosis. We confirmed that this molecular cascade occurs in lymphoid tissues and brains from patients with acquired immunodeficiency syndrome (AIDS). We found that clinically used HIV-1 protease inhibitors mediate cytoprotective effects in vivo, for instance in the context of stroke and retinal detachment. This effect involves the (off-target) inhibition of lethal mitochondrial membrane permeabilization. We defined several new pharmacological targets to prevent HIV-1 infection of host cells: the tyrosine kinase PYK2, the ion channel pannexin 1, purinergic P2Y2 receptors and the E3 ubiquitin ligase CBL. Finally, we identified NLRP3 as a restriction factor for HIV-1 infection.

 

Principal references:

  • Macho A, Castedo M, Marchetti P, Aguilar JJ, Decaudin D, Zamzami N, Girard PM, Uriel J, Kroemer G. Mitochondrial dysfunctions in circulating T lymphocytes from human immunodeficiency virus carriers. Blood. 1995 Oct 1;86(7):2481-7. 
  • Jacotot E, Ravagnan L, Loeffler M, Ferri KF, Vieira HL, Zamzami N, Costantini P, Druillennec S, Hoebeke J, Briand JP, Irinopoulou T, Daugas E, Susin SA, Cointe D, Xie ZH, Reed JC, Roques BP, Kroemer G. The HIV-1 viral protein R induces apoptosis via a direct effect on the mitochondrial permeability transition pore. J Exp Med. 2000 Jan 3;191(1):33-46. 
  • Ferri KF, Jacotot E, Blanco J, Este JA, Zamzami N, Susin SA, Xie Z, Brothers G, Reed JC, Penninger JM, Kroemer G. Apoptosis control in syncytia induced by the HIV type 1-envelope glycoprotein complex: role of mitochondria and caspases. J Exp Med. 2000 Oct 16;192(8):1081-92. 
  • Boya P, Roques B, Kroemer G. Viral and bacterial proteins regulating apoptosis at the mitochondrial level. EMBO J. 2001 Aug 15;20(16):4325-31. 
  • Castedo M, Ferri KF, Blanco J, Roumier T, Larochette N, Barretina J, Amendola A, Nardacci R, Metivier D, Este JA, Piacentini M, Kroemer G. Human immunodeficiency virus 1 envelope glycoprotein complex-induced apoptosis involves mammalian target of rapamycin/FKBP12-rapamycin-associated protein-mediated p53 phosphorylation. J Exp Med. 2001 Oct 15;194(8):1097-110. 
  • Castedo M, Roumier T, Blanco J, Ferri KF, Barretina J, Tintignac LA, Andreau K, Perfettini JL, Amendola A, Nardacci R, Leduc P, Druillennec S, Roques B, Leibovitch SA, Vilella-Bach M, Chen J, Este JA, Modjtahedi N, Piacentini M, Kroemer G. Sequential involvement of Cdk1, mTOR and p53 in apoptosis induced by the HIV-1 envelope. EMBO J. 2002 Aug 1;21(15):4070-80. 
  • Castedo M, Perfettini JL, Kroemer G. Mitochondrial apoptosis and the peripheral benzodiazepine receptor: a novel target for viral and pharmacological manipulation. J Exp Med. 2002 Nov 4;196(9):1121-5.
  • Perfettini JL, Roumier T, Castedo M, Larochette N, Boya P, Raynal B, Lazar V, Ciccosanti F, Nardacci R, Penninger J, Piacentini M, Kroemer G. NF-kB and p53 are the dominant apoptosis-inducing transcription factors elicited by the HIV-1 envelope. J Exp Med. 2004 Mar 1;199(5):629-640. 
  • Perfettini JL, Castedo M, Nardacci R, Ciccosanti F, Boya P, Roumier T, Larochette N, Piacentini M, Kroemer G. Essential role of p53 phosphorylation by p38 MAPK in apoptosis induction by the HIV-1 envelope. J Exp Med. 2005 Jan 17;201(2):279-89. 
  • Weaver JG, Tarze A, Moffat TC, Lebras M, Deniaud A, Brenner C, Bren GD, Morin MY, Phenix BN, Dong L, Jiang SX, Sim VL, Zurakowski B, Lallier J, Hardin H, Wettstein P, van Heeswijk RP, Douen A, Kroemer RT, Hou ST, Bennett SA, Lynch DH, Kroemer G, Badley AD. Inhibition of adenine nucleotide translocator pore function and protection against apoptosis in vivo by an HIV protease inhibitor. J Clin Invest. 2005 Jul;115(7):1828-38. 
  • Poncet D, Pauleau AL, Szabadkai G, Vozza A, Scholz SR, LeBras M, Brière JJ, Jalil A, LeMoigne R, Brenner C, Hahn G, Wittig I, Schagger H, Lemaire C, Bianchi K, Souquere S, Pierron G, Rustin P, Goldmacher VS, Rizzuto R, Palmieri F, Kroemer G. Cytopathic effects of the Cytomegalovirus-encoded apoptosis-inhibitory protein vMIA. J Cell Biol. 2006 Sep 25;174(7):985-96. 
  • Hisatomi T, Nakazawa T, Noda K, Almulki L, Miyahara S, Nakao S, Ito Y, She H, Kohno R, Michaud N, Ishibashi T, Hafezi-Moghadam A, Badley AD, Kroemer G, Miller JW. ( Corresponding author). HIV protease inhibitors provide neuroprotection through inhibition of mitochondrial apoptosis in mice. J Clin Invest. 2008 Jun;118(6):2025-38.
  • Séror C, Melki MT, Subra F, Raza SQ, Bras M, Saïdi H, Nardacci R, Voisin L, Paoletti A, Law F, Martins I, Amendola A, Abdul-Sater AA, Ciccosanti F, Delelis O, Niedergang F, Thierry S, Said-Sadier N, Lamaze C, Métivier D, Estaquier J, Fimia GM, Falasca L, Casetti R, Modjtahedi N, Kanellopoulos J, Mouscadet JF, Ojcius DM, Piacentini M, Gougeon ML, Kroemer G , Perfettini JL ( corresponding and co-senior author). Extracellular ATP acts on P2Y2 purinergic receptors to facilitate HIV-1 infection. J Exp Med. 2011 Aug 29;208(9):1823-34. 
  • Paoletti A, Allouch A, Caillet M, Saidi H, Subra F, Nardacci R, Wu Q, Muradova Z, Voisin L, Raza SQ, Law F, Thoreau M, Dakhli H, Delelis O, Poirier-Beaudouin B, Dereuddre-Boquet N, Le Grand R, Lambotte O, Seaz-Cirion, A, Pancino G, Ojcius DM, Solary E, Deutsch E, Piacentini M, Gougeon ML, Kroemer G , Perfettini JL. ( Senior author). HIV-1 envelope overcomes NLRP3-mediated inhibition of F-actin polymerization for viral entry Cell Rep. 2019 Sep 24;28(13):3381-3394.

 

Crosstalk between suicidal and autophagic pathways

We launched the debate that necrosis might constitute a regulated cell death pathway that is controlled by mitochondria. We discovered that cell death can be initiated at the level of lysosomal membrane permeabilization, upstream of mitochondria, in which case the cells acquire a vacuolated morphology before they undergo apoptosis or necrosis. We showed that autophagy usually is a cytoprotective event that avoids or delays cell death, in part by sequestering and neutralizing damaged mitochondria, meaning that the term ‘autophagic cell death’ is a misnomer.
We deciphered part of the molecular crosstalk between apoptosis and autophagy, showing that proteins of the BCL2 family can control both catabolic processes. Indeed, we found that BCL2 and other BCL2-like multidomain antiapoptotic proteins (such as BCL2L1 and MCL1) interact with a BH3 domain in the pro-autophagic protein Beclin 1, thereby inhibiting autophagy, while pro-apoptotic BH3-only proteins from the BCL2 family (as well as pharmacological BH3 mimetics) competitively disrupt this interaction, thereby stimulating autophagy. We found that activation of prominent elements of the classical NF-B activation pathway (in particular TAK1 and the proteins of the IKK complex) are required for the optimal induction of autophagy. We observed that STAT3 can suppress autophagy through a non-transcriptional mechanism, via the inhibition of eukaryotic translation initiation factor 2-alpha kinase 2 (EIF2AK2, best known as PKR).
We discovered that the pro-apoptotic tumor suppressor protein TP53 plays a dual role in the control of autophagy, namely as an autophagy-inducing transcription factor and as an autophagy-repressing cytoplasmic factor. We also found that TP53 regulates ferroptosis, which is connected to autophagic pathways. We provided an operational definition of ‘mitotic catastrophe’ as a TP53-dependent oncosuppressive mechanism that is important for eliminating tetraploid cancer cell precursors and that can be activated by specific drugs targeting cell cycle checkpoints.
Finally, we built a theoretical framework to explain the metabolic control of cell death and autophagy, as well as their molecular crosstalk.

Principal references:

  • Hirsch T, Marchetti P, Susin SA, Dallaporta B, Zamzami N, Marzo I, Geuskens M, Kroemer G. The apoptosis-necrosis paradox. Apoptogenic proteases activated after mitochondrial permeability transition determine the mode of cell death. Oncogene. 1997 Sep 25;15(13):1573-81. 
  • Ferri KF, Kroemer G. Organelle-specific initiation of cell death pathways. Nat Cell Biol. 2001 Nov;3(11):E255-63. 
  • Castedo M, Perfettini JL, Roumier T, Andreau K, Medema R, Kroemer G. Cell death by mitotic catastrophe: a molecular definition. Oncogene. 2004 Apr 12;23(16):2825-37. 
  • Boya P, Andreau K, Poncet D, Zamzami N, Perfettini JL, Metivier D, Ojcius DM, Jaattela M, Kroemer G. Lysosomal membrane permeabilization induces cell death in a mitochondrion-dependent fashion. J Exp Med. 2003 May 19;197(10):1323-34. 
  • Kroemer G, Martin SH. Caspase-independent cell death. Nat. Med. 2005 Jul;11(7):725-30. 
  • González-Polo RA, Boya P, Pauleau AL, Jalil A, Larochette N, Souquère S, Eskelinen EL, Pierron G, Saftig P, Kroemer G. The apoptosis/autophagy paradox: autophagic vacuolization before apoptotic death. J Cell Sci. 2005 Jul 15;118(Pt14):3091-102. 
  • Castedo M, Coquelle A, Vivet S, Kaufmann A, Pequignot MO, Casares N, Valten A, Mouhamad S, Schmitt E, Modhtahedi N, Zitvogel L, Vainchenker W, Lazar V, Garrido C, Kroemer G. Apoptosis regulation in tetraploid cancer cells. EMBO J. 2006 Jun 7;25(11):2584-95. 
  • Maiuri MC, Le Toumelin G, Criollo A, Rain JC, Gautier F, Juin P, Tasdemir E, Pierron G, Troulinaki K, Tavernarakis N, Hickman JA, Geneste O, Kroemer G. Functional and physical interaction between Bcl-X(L) and a BH3-like domain in Beclin-1. EMBO J. 2007 May 16;26(10):2527-39. 
  • Maiuri MC, Criollo A, Tasdemir E, Vicencio JM, Tajeddine N, Hickman JA, Geneste O, Kroemer G. BH3-only proteins and BH3 mimetics induce autophagy by competitively disrupting the interaction between Beclin 1 and Bcl-2/Bcl-X(L). Autophagy. 2007 Jul-Aug;3(4):374-6. 
  • Zermati Y, Mouhamad S, Stergiou L, Besse B, Galluzzi L, Boehrer S, Pauleau AL, Rosselli F, D'Amelio M, Amendola R, Castedo M, Hengartner M, Soria JC, Cecconi F, Kroemer G. Nonapoptotic role for Apaf-1 in the DNA damage checkpoint. Mol Cell. 2007 Nov 30;28(4):624-37. 
  • Levine B, Sinha S, Kroemer G. Bcl-2 family members: dual regulators of apoptosis and autophagy. Autophagy. 2008 May 12;4(5). 
  • Tasdemir E, Maiuri MC, Galluzzi L, Vitale I, Djavaheri-Mergny M, D'Amelio M, Criollo A, Morselli E, Zhu C, Harper F, Nannmark U, Samara C, Pinton P, Vicencio JM, Carnuccio R, Moll UM, Madeo F, Rizzuto R, Szabadkai G, Pierron G, Blomgren K, Tavernarakis N, Codogno P, Cecconi F, Kroemer G. Regulation of autophagy by cytoplasmic p53. Nat Cell Biol. 2008 Jun;10(6):676-87. 
  • Boya P, Kroemer G. Lysosomal membrane permeabilization in cell death. Oncogene. 2008 Oct 27;27(50):6434-51. 
  • Galluzzi L, Kroemer G. Necroptosis: a specialized pathway of programmed necrosis. Cell. 2008 Dec 26;135(7):1161-3. 
  • Green DR, Kroemer G. Cytoplasmic effects of the tumor suppressor p53. Nature 2009 April; 458:1127-1130. 
  • Criollo A, Senovilla L, Kepp O, Authier H, Shen S, Maiuri MC, Tasdemir E, Tallier M, Morselli E, Galluzzi L, Delahaye N, Tesniere A, Commo F, Harper F, Vicencio JM, Ben Younes A, Pierron G, Lavasndero S, Zitvogel L, Israel A, Baud V, Kroemer G. The IKK complex contributes to the induction of autophagy. EMBO J. 2010 Feb 3;29(3):619-31. 
  • Vitale I, Senovilla L, Jemma M, Michaud M, Galluzzi L, Kepp O, Nanty L, Criollo A, Rello-Varona S, Manic G, Metivier D, Vivet S, Tajedine N, Valent A, Castedo M, Kroemer G. Multipolar mitosis of tetraploid cells: inhibition by p53 and dependency on Mos. EMBO J. 2010 Apr 7;29(7):1272-84. 
  • Maiuri MC, Galluzzi L, Morselli E, Kepp O, Malik SA, Kroemer G. Autophagy regulation by p53. Curr Opin Cell Biol. 2010 Apr;22(2):181-5. 
  • Criollo A, Niso-Santano M, Malik SA, Michaud M, Morselli E, Mariño G, Lachkar S, Arkhipenko AV, Harper F, Pierron G, Rain JC, Ninomiya-Tsuji J, Fuentes JM, Lavandero S, Galluzzi L, Maiuri MC, Kroemer G. Inhibition of autophagy by TAB2 and TAB3. EMBO J. 2011 Nov 11;30(24):4908-20. 
  • Jemaà M, Vitale I, Kepp O, Berardinelli F, Galluzzi L, Senovilla L, Mariño G, Malik SA, Rello-Varona S, Lissa D, Antoccia A, Tailler M, Schlemmer F, Harper F, Pierron G, Castedo M, Kroemer G. Selective killing of p53-deficient cancer cells by SP600125. EMBO Mol Med. 2012 Jun;4(6):500-14.
  • Shen S, Niso-Santano M, Adjemian S, Takehara T, Malik SA, Minoux H, Souquere S, Marino G, Lachkar S, Maiuri C, Senovilla L, Galluzzi L, Kepp O, Pierron G, Hikita H, Kroemer R, Kroemer G. Cytoplasmic STAT3 represses autophagy by inhibiting PKR activity. Mol Cell 2012 Dec 14; 48(12):667–680. 
  • Brenner C, Galluzzi L, Kepp O, Kroemer G. Decoding cell death signals in liver inflammation. J Hepatol. 2013 Sep;59(3):583-94. 
  • Lissa D, Senovilla L, Rello-Varona S, Vitale I, Michaud M, Pietrocola F, Boilève A, Bordenave C, Garcia P, Michels J, Jeema M, Galluzzi L, Kepp O, Castedo M, Kroemer G. Resveratrol and salicylate eliminate tetraploid cells for anticancer chemoprevention. Proc Natl Acad Sci USA 2014 Feb 25;111(8):3020-5.
  • Galluzzi L, Pietrocola F, Levine B, Kroemer G. Metabolic control of autophagy. Cell. 2014 Dec 4;159(6):1263-1276. 
  • Galluzzi L, Pietrocola F, Bravo-San Pedro JM, Amaravadi RK, Cecconi F, Codogno P, Debnath J, Karantza V, Kumar S, Levine B, Maiuri C, Martin S, Penninger J, Piacentini M, Simon HU, Velasco G, Bryan K, Kroemer G. Autophagy in malignant transformation and tumor progression. EMBO J. 2015 Apr 1;34(7):856-880. 
  • Galluzzi L, López-Soto A, Kumar S, Kroemer G. Caspases connect cell death signaling to organismal homeostasis. Immunity. 2016 Feb 16;44(2):221-231. 
  • Xie Y, Zhu S, Song X, Sun X, Fan Y, Liu J, Zhong M, Yuan H, Zhang L, Billiar TR, Lotze MT, Zeh HJ 3rd, Kang R, Kroemer G , Tang D. ( Corresponding author). The tumor suppressor p53 limits ferroptosis by blocking DPP4 activity. Cell Rep. 2017 Aug 15;20(7):1692-1704. 
  • Obrist F, Michels J, Durand S, Cherry A, Pol J, Levesque S, Joseph A, Astesana V, Pietrocola F, Wu GS, Castedo M, Kroemer G. Metabolic vulnerability of cisplatin-resistant cancer cells. EMBO J. 2018 Jul 13;37(14). pii: e98597.
  • Tang D, Kang R, Berghe TV, Vandenabeele P, Kroemer G. The molecular machinery of regulated cell death. Cell Res. 2019 May;29(5):347-364. 
  • Liu J, Song X, Kuang F, Zhang Q, Kang R, Kroemer G , Tang D. ( Corresponding author). NUPR1 Is a critical repressor of ferroptosis. Nat Commun. 2021 Jan 28;12(1):647. 
  • Tang D, Chen X, Kang R, Kroemer G. Ferroptosis: molecular mechanisms and health implications. Cell Res. 2021 Feb;31(2):107-125.

 

Immunogenic cell death for optimal cancer therapy

Our group invalidated the dogma that apoptosis is a non-immunogenic cell death modality. We demonstrated that, depending on the upstream triggers and premortem stress responses, apoptosis can be immunogenic and hence alert the innate immune system and instruct it to ignite a cognate response against dead-cell antigens. This has opened a new field of research at the frontier between immunology and cell biology, allowing us to define the molecular properties of a specific modality of cellular demise that we dubbed ‘immunogenic cell death’ (ICD).

Mechanistically, we found that ICD is characterized by autocrine stimulation of type-1 interferon (IFN) receptors, the pre-apoptotic exposure of calreticulin (CALR) on the cell surface, release of ATP during the blebbing phase of apoptosis, and post-apoptotic exodus of annexin A1 (ANXA1) and the chromatin-binding protein high mobility group B1 (HMGB1). Type-1 interferon secretion depends on the stimulation of toll-like receptor 3 (TLR3) or STING, CALR exposure on an endoplasmic reticulum stress response, ATP release on pre-mortem autophagy, and annexin A1/HMGB1 exodus on secondary necrosis. ATP, ANXA1, CALR and HMGB1 interact with four receptor types present on the surface of dendritic cells, namely, purinergic P2Y2 or P2X7 receptors, formyl peptide receptor-1 (FPR1), CD91, and toll-like receptor 4 (TLR4), respectively. P2Y2, FPR1, CD91, P2RX7 and TLR4 promote chemotaxis of dendritic cells (DC), juxtaposition of DC and dying cells, engulfment of dead-cell antigen, production of interleukin-1β and cross-presentation of tumor antigens by DC, respectively. Local induction of the integrated stress response (i.e., phosphorylation of eukaryotic initiation factor 2, eIF2) in the tumor bed and systemic induction of autophagy increase anticancer immune responses. Altogether, these molecular events form a cascade that explains the mechanisms of ICD.

We launched and then proved the hypothesis that, both in mouse models and in cancer patients, the immune response against malignant cells dictates the therapeutic success of anticancer chemotherapy, radiotherapy and photodynamic therapy. We obtained clinical confirmation of this hypothesis for anthracycline-treated breast cancer, oxaliplatin-treated colorectal cancer and imatinib-treated gastrointestinal stromal tumors, among others. Obviously, this discovery has had major consequences for the comprehension, conception and implementation of antineoplastic drugs, strongly influencing the strategy for preclinical and clinical drug development by the pharmacological industry. In patients, suboptimal therapeutic regimens (failing to induce ICD), selective alterations in cancer cells (preventing the emission of immunogenic signals during ICD), inherited or acquired defects in immune effectors (abolishing the perception of ICD by the immune system), as well as systemic immunosuppression (due to a stress-induced elevation of glucocorticoids or due to immunosuppressive medications), can all contribute to therapeutic failure.

We developed a phenotypic screening platform using biosensor cell lines to identify novel ICD inducers, and we characterized several drugs with promising antineoplastic effects. This screening platform rendered service to multiple pharmaceutical companies and allowed for the identification of new lead compounds for clinical development. One successful example is lurbinectedin (Pharmamar) that we found to induce ICD in 2019 and that was FDA approved for the treatment of small cell lung cancer in June 2020. A second example is an ICD-inducing anti-BCMA antibody (belantamab mafodotin, Glaxo Smith Kline) that was characterized on our platform and that was FDA approved in August 2020 for the treatment of relapsed or refractory multiple myeloma. A third example is LTX-315 (Lytix/Verrica) that has received IND approval for phase II evaluation in the US (NCT01986426), for the treatment of transdermally accessible tumours as monotherapy or in combination with ipilimumab or pembrolizumab. Indeed, many pharmaceutical and biotechnology companies are developing ICD inducers, and dozens of clinical trials are underway to show that they can be advantageously combined with immune checkpoint inhibitors.

We used the accumulated information from dozens of screens and artificial intelligence to elaborate algorithms that calculate the probability that cytotoxic agents can induce ICD. Using this approach, we found that the most important functional feature of many ICD inducers resides in their capacity to inhibit general DNA-to-RNA transcription, thus eliciting the phosphorylation of eIF2 as part of the integrated stress response.

Finally, we developed a genetic screening system based on immortalized dendritic cell (DC) precursors that can be de-immortalized and differentiated into DCs for their subsequent functional characterization with respect to antigen presentation in vitro and in vivo. Using this system, we identified new immune checkpoint inhibitors (ICIs) acting on DCs to improve the perception of ICD. We refer to this kind of ICIs as ICD enhancers.

Principal references:

  • Casares N, Pequignot MO, Tesniere A, Ghiringhelli F, Roux S, Chaput N, Schmitt E, Hamai A, Obeid M, Coutant F, Metivier D, Pichard E, Aucouturier P, Pierron G, Garrido C, Zitvogel L, Kroemer G. Caspase-dependent immunogenicity of doxorubicin-induced tumor cell death. J Exp Med. 2005 Dec 19;202(12):1691-701. 
  • Taieb J, Chaput N, Menard C, Apetoh L, Ullrich E, Bonmort M, Pequignot M, Casares N, Terme M, Flament C, Opolon P, Lecluse Y, Metivier D, Tomasello E, Vivier E, Ghiringhelli F, Martin F, Klatzmann D, Poynard T, Tursz T, Raposo G, Yagita H, Ryffel B, Kroemer G, Zitvogel L. A novel dendritic cell subset involved in tumor immunosurveillance. Nat Med. 2006 Feb;12(2):214-9. 
  • Obeid M, Tesniere A, Ghiringhelli F, Fimia GM, Apetoh L, Perfettini JL, Castedo M, Mignot G, Metivier D, Larochette D, van Edert P, Ciccosanti F, Piacentini F, Zitvogel L, Kroemer G. Calreticulin exposure dictates the immunogenicity of cancer cell death. Nat Med. 2007 Jan;13(1):54-61. 
  • Apetoh L, Ghiringhelli F, Tesniere A, Obeid M, Ortiz C, Criollo A, Mignot G, Maiuri MC, Ullrich E, Saulnier P, Yang H, Amigorena S, Ryffel B, Barrat FJ, Saftig P, Levi F, Lidereau R, Nogues C, Mira JP, Chompret A, Joulin V, Clavel-Chapelon F, Bourhis J, André F, Delaloge S, Tursz T, Kroemer G , Zitvogel L. ( Shared senior author). Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy. Nat Med. 2007 Oct;13(9):1050-1059. 
  • Obeid M, Panaretakis T, Joza N, Tufi R, Tesniere A, van Endert P, Zitvogel L, Kroemer G. Calreticulin exposure is required for the immunogenicity of gamma-irradiation and UVC light-induced apoptosis. Cell Death Differ. 2007 Oct;14(10):1848-50. 
  • Zitvogel L, Apetoh L, Ghiringhelli F, André F, Tesniere A, Kroemer G. The anticancer immune response: indispensable for therapeutic success? J Clin Invest. 2008 Jun;118(6):1991-2001. 
  • Panaretakis T, Kepp O, Brockmeyer U, Tesniere A, Durchschlag M, Joza, N, Pierron G, van Endert P, Yuan J, Zitvogel L, Madeo F, Williams DB, Kroemer G. Mechanisms of pre-apoptotic calreticulin exposure in immunogenic cell death. EMBO J. 2009 Mar 4;28(5):578-90. 
  • Ghiringhelli F, Apetoh L, Tesniere A, Aymeric L, Ma Y, Ortiz C, Vermaelen K, Panaretakis T, Mignot G, Ullrich E, Perfettini JL, Schlemmer F, Tasdemir E, Uhl M, Génin P, Civas A, Ryffel B, Kanellopoulos J, Tschopp J, André F, Lidereau R, McLaughlin NM, Haynes NM, Smyth MJ, Kroemer G , Zitvogel L (equal senior and co-corresponding author). Activation of the NLRP3 inflammasome in dendritic cells induces IL-1-dependent adaptive immunity against tumors. Nat Med 2009 Oct;15(10):1170-8. 
  • Tesniere A, Schlemmer F, Boige V, Kepp O, Martins I, Ghiringhelli F, Aymeric L, Michaud M, Apetoh L, Barault L, Mendiboure J, Pignon JP, Jooste V, van Endert P, Ducreux M, Zitvogel L, Piard F, Kroemer G. Immunogenic death of colon cancer cells treated with oxaliplatin. Oncogene. 2010 Jan 28;29(4):482-91. 
  • Zitvogel L, Kepp O, Kroemer G. Decoding cell death signals in inflammation and immunity. Cell. 2010 Mar 19;140(6):798-804. 
  • Ma Y, Aymeric L, Locher C, Mattarollo SR, Delahaye NF, Pereira P, Boucontet L, Apetoh L, Ghiringhelli F, Casares N, Lasarte JJ, Matsuzaki G, Ikuta K, Ryffel B, Benlagha K, Tesnière A, Ibrahim N, Déchanet-Merville J, Chaput N, Smyth MJ, Kroemer G , Zitvogel L. ( corresponding author). Pivotal contribution of IL-17 producing  T cells to the efficacy of chemotherapy. J Exp Med. 2011 Mar 14;208(3):491-503. 
  • Michaud M, Martin I, Sukkuwala A, Adjemian S, Ma Y, Pellegati P, Shen S, Kepp O, Scoazec M, Mignot G, Rello-Varona S, Tailler M, Menger L, Vacchelli E, Galluzzi L, Ghiringhelli F, Galluzzi L, di Virgilio F, Zitvogel L, Kroemer G. Autophagy-dependent anticancer immune responses induced by chemotherapeutic agents in mice. Science. 2011 Dec16;334:1573-1577. 
  • Galluzzi L, Kepp O, Kroemer G. Enlightening the impact of immunogenic cell death in photodynamic cancer therapy. EMBO J. 2012 Jan 17;31(5):1055-7. 
  • Zitvogel L, Kepp O, Galluzzi L, Kroemer G. Inflammasomes in carcinogenesis and anticancer immune responses. Nat Immunol. 2012 Mar 18;13(4):343-51. 
  • Galluzzi L, Senovilla L, Vitale I, Michels J, Martins I, Kepp O, Castedo M, Kroemer G. Molecular mechanisms of cisplatin resistance. Oncogene. 2012 Apr 12;31(15):1869-83. 
  • Senovilla L, Vitale I, Martins I, Tailler M, Pailleret C, Michaud M, Galluzzi L, Adjemian S, Kepp O, Niso-Santano M, Shen S, Mariño G, Criollo A, Boilève A, Job B, Ladoire S, Ghiringhelli F, Sistigu A, Yamazaki T, Rello-Varona S, Locher C, Poirier-Colame V, Talbot M, Valent A, Berardinelli F, Antoccia A, Ciccosanti F, Fimia GM, Piacentini M, Fueyo A, Messina NL, Li M, Chan CJ, Sigl V, Pourcher G, Ruckenstuhl C, Carmona-Gutierrez D, Lazar V, Penninger JM, Madeo F, López-Otín C, Smyth MJ, Zitvogel L, Castedo M, Kroemer G. An immunosurveillance mechanism controls cancer cell ploidy. Science. 2012 Sep 28;337(6102):1678-84. 
  • Ma Y, Adjemian S, Mattarollo SR, Yamazaki T, Aymeric L, Yang H, Portela Catani JP, Hannani D, Duret H, Steegh K, Martins I, Schlemmer F, Michaud M, Kepp O, Sukkurwala AQ, Menger L, Vacchelli E, Droin N, Galluzzi L, Krzysiek R, Gordon S, Taylor PR, Van Endert P, Solary E, Smyth MJ,Zitvogel L, Kroemer G. Anticancer chemotherapy-induced intratumoral recruitment and differentiation of antigen-presenting cells. Immunity. 2013 Apr 18;38(4):729-41. 
  • Zitvogel L, Galluzzi L, Smyth MJ, Kroemer G. Mechanism of action of conventional and targeted anticancer therapies: reinstating immunosurveillance. Immunity. 2013 Jul 25;39(1):74-88. 
  • Ma Y, Galluzzi L, Zitvogel L, Kroemer G. Autophagy and the cellular immune response. Immunity. 2013 Aug 22;39(2):211-27. 
  • Rao S, Tortola L, Perlot T, Wirnsberger G, Novatchkova M, Nitsch R, Sykacek P, Frank L, Schramek D, Komnenovic V, Sigl V, Aumayr K, Schmauss G, Fellner N, Handschuh S, Glösmann M, Pasierbek P, Schlederer M, Resch GP, Ma Y, Yang H, Popper H, Kenner L, Kroemer G , Penninger JM. ( Corresponding author). A dual role for autophagy in a murine model of lung cancer. Nat Commun. 2014 Jan 20;5:3056. 
  • Sistigu A, Yamazaki T, Vacchelli E, Chaba K, Enot DP, Adam J, Vitale I, Goubar A, Baracco EE, Remédios C, Fend L, Hannani D, Aymeric L, Ma Y, Niso-Santano M, Kepp O, Schultze JL, Tüting T, Belardelli F, Bracci L, La Sorsa V, Urbani F, Delorenzi M, Lacroix-Triki M, Quidville V, Conforti R, Spano JP, Pusztai L, Poirier-Colame V, Delaloge S, Penault-Llorca F, Ladoire S, Arnould L, Cyrta J, Dessoliers MC, Eggermont A, Bianchi ME, Pittet M, Engblom C, Pfirschke C, Préville X, Uzè G, Schreiber RD, Chow MT, Smyth MJ, Proietti E, André F, Kroemer G , Zitvogel L. ( Corresponding author and co-senior author). Cancer cell-autonomous contribution of type I interferon signaling to the efficacy of chemotherapy. Nat Med. 2014 Nov;20(11):1301-1309. 
  • Kroemer G, Senovilla L, Galluzzi L, André F, Zitvogel L. Natural and therapy-induced immunosurveillance in breast cancer. Nat Med. 2015 Oct 7;21(10):1128-38. 
  • Vacchelli E, Ma Y, Baracco EE, Sistigu A, Enot DP, Pietrocola F, Yang H, Adjemian S, Chaba K, Semeraro M, Signore M, De Ninno A, Lucarini V, Peschiaroli F, Businaro L, Gerardino A, Manic G, Ulas T, Günther P, Schultze JL, Kepp O, Stoll G, Lefebvre C, Mulot C, Castoldi F, Rusakiewicz S, Ladoire S, Apetoh L, Bravo-San Pedro JM, Lucattelli M, Delarasse C, Boige V, Ducreux M, Delaloge S, Borg C, André F, Schiavoni G, Vitale I, Laurent-Puig P, Mattei F, Zitvogel L, Kroemer G. Chemotherapy-induced antitumor immunity requires formyl peptide receptor 1. Science. 2015 Nov 20;350(6263):972-8. 
  • Galluzzi L, Buqué A, Kepp O, Zitvogel L, Kroemer G. Immunological effects of conventional chemotherapy and targeted anticancer agents. Cancer Cell. 2015 Dec 14;28(6):690-714. 
  • Pitt JM, Vétizou M, Daillère R, Roberti MP, Yamazaki T, Routy B, Lepage P, Boneca IG, Chamaillard M, Kroemer G, Zitvogel L. Resistance mechanisms to immune-checkpoint blockade in cancer: tumor-intrinsic and -extrinsic factors. Immunity. 2016 Jun 21;44(6):1255-69. 
  • Gomes-da-Silva LC, Zhao L, Zhou H, Liu P, Sauvat A, Bezu L, Durand S, Leduc M, Pierron G, Loos F, Sveinbjørnsson B, Rekdal Ø, Boncompain G, Perez F, Arnaut L, Kepp O, and Kroemer G. Photodynamic therapy with redaporfin targets the endoplasmic reticulum and Golgi apparatus. EMBO J. 2018 Jul 2;37(13). pii: e98354.
  • Bezu L, Sauvat A, Humeau J, Gomes-da-Silva LC, Iribarren K, Forveille S, Garcia P, Zhao L, Liu P, Zitvogel L, Senovilla L, Kepp O, Kroemer G. eIF2α phosphorylation is pathognomonic for immunogenic cell death. Cell Death Differ. 2018 Aug;25(8):1375-1393. 
  • Liu P, Zhao L, Pol J, Levesque S, Petrazzuolo A, Pfirschke C, Engblom C, Rickelt S, Yamazaki T, Iribarren K, Senovilla L, Bezu L, Vacchelli E, Sica V, Melis A, Martin T, Xia L, Yang H, Li Q, Chen J, Durand S, Aprahamian F, Lefevre D, Broutin S, Paci A, Bongers A, Minard-Colin V, Tartour E, Zitvogel L, Apetoh L, Ma Y, Pittet MJ, Kepp O, Kroemer G. Crizotinib-induced immunogenic cell death in non-small cell lung cancer. Nat Commun. 2019 Apr 2;10(1):1486. 
  • Vitale I, Manic G, Coussens LM, Kroemer G , Galluzzi L. ( Corresponding author). Macrophages and metabolism in the tumor microenvironment. Cell Metab. 2019 Jul 2;30(1):36-50. 
  • Deutsch E, Chargari C, Galluzzi L, Kroemer G. Optimising efficacy and reducing toxicity of anticancer radioimmunotherapy. Lancet Oncol. 2019 Aug;20(8):e452-e463. 
  • Xie W, Forveille S, Iribarren K, Sauvat A, Senovilla L, Wang Y, Humeau J, Perez-Lanzon M, Zhou H, Martínez-Leal JF, Kroemer G , Kepp O. ( Corresponding author). Lurbinectedin synergizes with immune checkpoint blockade to generate anticancer immunity. Oncoimmunology. 2019 Sep 5;8(11):e1656502.
  • Yang H, Xia L, Chen J, Zhang S, Martin V, Li Q, Lin S, Chen J, Calmette J, Lu M, Fu L, Yang J, Pan Z, Yu K, He J, Morand E, Schlecht-Louf G, Krzysiek R, Zitvogel L, Kang B, Zhang Z, Leader A, Zhou P, Lanfumey L, Shi M, Kroemer G , Ma Y. ( Corresponding author). Stress-glucocorticoid-TSC22D3 axis compromises therapy-induced antitumor immunity. Nat Med. 2019 Sep;25(9):1428-1441. 
  • Humeau JF, Sauvat A, Cerrato G, Loos F, Ianntuoni F, Bezu L, Levesque S, Paillet J, Pok J, Stoll G, Leduc M, Zitvogel L, de Thé H, Kepp O, Kroemer G. Inhibition of transcription by dactinomycin reveals a new characteristic of immunogenic cell stress. EMBO Mol Med. 2020 May 8;12(5):e11622.
  • Roberti MP, Yonekura S, Duong CPM, Picard M, Ferrere G, Tidjani Alou M, Rauber C, Iebba V, Lehmann CHK, Amon L, Dudziak D, Derosa L, Routy B, Flament C, Richard C, Daillère R, Fluckiger A, Van Seuningen I, Chamaillard M, Vincent A, Kourula S, Opolon P, Ly P, Pizzato E, Becharef S, Paillet J, Klein C, Marliot F, Pietrantonio F, Benoist S, Scoazec JY, Dartigues P, Hollebecque A, Malka D, Pagès F, Galon J, Gomperts Boneca I, Lepage P, Ryffel B, Raoult D, Eggermont A, Vanden Berghe T, Ghiringhelli F, Vandenabeele P, Kroemer G, Zitvogel L. Chemotherapy-induced ileal crypt apoptosis and the ileal microbiome shape immunosurveillance and prognosis of proximal colon cancer. Nat Med. 2020 Jun;26(6):919-931. 
  • Fucikova J, Spisek R, Kroemer G , Galluzzi L. ( Corresponding author). Calreticulin and cancer. Cell Res. 2021 Jan;31(1):5-16. 
  • Peltroni G, Buqué A, Zitvogel L, Kroemer G , Galluzzi L. ( Corresponding author). Immunomodulation by targeted anticancer agents. Cancer Cell. 2021 Mar 8;39(3):310-345. 
  • Chen X, Kang R, Kroemer G , Tang D. ( Corresponding author). Ferroptosis in infection, inflammation, and immunity. J Exp Med. 2021 Jun 7;218(6):e20210518. 
  • Kepp O, Bezu L, Yamazaki T, Di Virgilio F, Smyth MJ, Kroemer G , Galluzzi L. ( Corresponding author). ATP and cancer immunosurveillance. EMBO J. 2021 Jul 1;40(13):e108130.
  • Zhao L, Liu P, Xie W, Zhang S, Thieme S, Zitvogel L, Kroemer G , Kepp O. ( Corresponding author). A genotype-phenotype screening system using conditionally immortalized immature dendritic cells. STAR Protoc. 2021 Aug 12;2(3):100732.
  • Kroemer G, Galassi C, Zitvogel L, Galluzzi L. Immunogenic cell stress and death. Nat Immunol. 2022 Apr;23(4):487-500. 
  • Bezu L, Wu Chuang A, Sauvat A, Humeau J, Xie W, Cerrato G, Liu P, Zhao L, Zhang S, Le Naour J, Pol J, van Endert P, Kepp O, Barlesi F, Kroemer G. Local anesthetics elicit immune-dependent anticancer effects. J Immunother Cancer. 2022 Apr;10(4):e004151.
  • Juncheng P, Joseph A, Lafarge A, Martins I, Obrist F, Pol J, Saavedra E, Li S, Sauvat A, Cerrato G, Lévesque S, Leduc M, Kepp O, Durand S, Aprahamian F, Nirmalathansan N, Michels J, Kroemer G , Castedo M. ( Corresponding author). Cancer cell-autonomous overactivation of PARP1 compromises immunosurveillance in non-small cell lung cancer. J Immunother Cancer. 2022 Jun;10(6):e004280.
  • Kroemer G, McQuade J, Merad M, André F, Zitvogel L. Bodywide ‘ecological’interventions on cancer. Nat Med. In press

 

Clinical cancer research: patient-relevant biomarkers

Helped by clinician scientists, mostly at the Gustave Roussy Cancer Center, we have identified biological parameters that predict outcome in patients with multiple carcinomas (such as co-treatment with cardiac glycosides, which induce immunogenic stress and hence improves cancer immunosurveillance), non-small cell lung cancer and cervical carcinoma (pyridoxine kinase [PDXK] expression and enzymatic activity of poly ADP-ribose polymerase [PARP] in cancer cells, both affecting immunosurveillance), pancreatic adenocarcinoma (levels of the ferroptosis-inhibitory proteins NUPR3 and LCN2), gastrointestinal stromal tumor and pediatric neuroblastoma (expression of immunosuppressive versus immunostimulatory NKp30 isoforms by circulating NK cells), as well as in patients with melanomas treated with ipiluminab (soluble CD25 protein concentrations in the plasma) or anti-PD1 (enhanced type-1 interferon production by the tumor).

Together with our collaborators, we observed that low calreticulin (CALR) expression is coupled to reduced phosphorylation of eukaryotic initiation factor 2 (phospho-eIF2), failing immunosurveillance and dismal prognosis in in acute myeloid leukemia, breast, lung and ovarian cancer. For breast cancer, we found that disabled autophagy in, and low HMGB1 expression by, malignant cells is associated with signs of poor local immunosurveillance and dismal prognosis. In the subgroup of triple-negative mammary cancers, high expression of B7-H4 constitutes a biomarker of poor immunosurveillance, inhibits eIF2phosphorylation and reduces calreticulin exposure. We detected sporadic somatic CALR mutations in human carcinomas and demonstrated that they can lead to the secretion of a truncated CALR protein that is immunosuppressive, acting as a decoy to prevent phagocytosis of dying cancer cells by dendritic cells. Most importantly, we found that a prevalent loss-of-function mutation in the gene coding for formyl peptide receptor 1 (FPR1), rs867228 (allelic frequency: 20%), correlates with the precocious manifestation of breast, colorectal, head & neck and esophageal carcinomas. Indeed, rs867228 acts as a general accelerator of the diagnosis of carcinoma, as indicated by pan-cancer analyses. Altogether, these finding support the notion that molecules and processes involved in the perception of immunogenic cell death (such as autophagy, CALR, phospho-eIF2, HMGB1 and FPR1) play an important role in shaping natural and therapy-induced immunosurveillance against neoplasia.

Finally, we demonstrated that the intestinal microbiota controls the tonus of the immune system, thereby determining the outcome of anticancer chemotherapies or immunotherapy with PD-1/PD-L1 blocking antibodies in patients with non-small cell lung cancers, renal cell carcinoma or uroepithelial cancer. Thus, prior antibiotherapy reduces the efficacy of immunotherapy, while the presence of specific bacteria in the gut such as Akkermansia muciniphila or Enterococcus hirae has a positive impact on patient survival, while favoring anticancer immune responses upon their transfer into laboratory mice. These latter results, in which mice become the ‘avatars’ of cancer patients with respect to their microbiota, established causality between intestinal dysbiosis and failure of cancer immunotherapy.

Principal references:

  • Braun T, Carvalho G, Coquelle A, Vozenin MC, Lepelley P, Hirsch F, Kiladjian JJ, Ribrag V, Fenaux P, Kroemer G. NF-B constitutes a potential therapeutic target in high-risk myelodysplastic syndrome. Blood. 2006 Feb 1;107(3):1156-65. 
  • Olaussen KA, Fouret P, Kroemer G. ERCC1-specific immunostaining in non-small-cell lung cancer. N Engl J Med. 2007 Oct 11;357(15):1559-61.
  • Boehrer S, Adès L, Braun T, Galluzzi L, Grosjean J, Fabre C, Le Roux G, Gardin C, Martin A, de Botton S, Fenaux P, Kroemer G. Erlotinib exhibits antineoplastic off-target effects in AML and MDS. Blood. 2008 Feb15;111(4):2170-80. 
  • Wemeau, M, Kepp O, Tesniere A, Flament C, Panaretakis T, de Botton S, Zitvogel L, Kroemer G , Chaput N. ( Corresponding author). Calreticulin exposure on malignant myeloblasts predicts a cellular anticancer immune response in patients with acute myeloid leukaemia. Cell Death Dis. 2010 Dec 2;1(12):e104. 
  • Delahaye NF, Rusakiewicz S, Martins I, Ménard C, Roux S, Lyonnet L, Paul P, Sarabi M, Chaput N, Semeraro M, Minard-Colin V, Poirier-Colame V, Chaba K, Flament C, Baud V, Authier H, Kerdine-Römer S, Pallardy M, Cremer I, Peaudecerf L, Rocha B, Valteau-Couanet D, Gutierrez JC, Nunès JA, Commo F, Terrier P, Opolon P, Bottino C, Moretta A, Tavernier J, Rihet P, Coindre JM, Blay JY, Isambert N, Emile JF, Vivier E, Lecesne A, Kroemer G , Zitvogel L. ( Corresponding author). Alternatively spliced NKp30 isoforms affect the prognosis of gastrointestinal stromal tumors. Nat Med. 2011 Jun;17(6):700-7. 
  • Galluzzi L, Vitale I, Senovilla L, Olaussen KA, Pinna G, Eisenberg T, Goubar A, Martins I, Michels J, Kratassiouk G, Carmona-Gutierrez D, Scoazec M, Vacchelli E, Schlemmer F, Kepp O, Shen S, Tailler M, Niso-Santano M, Morselli E, Criollo A, Adjemian S, Jemaà M, Chaba K, Pailleret C, Michaud M, Pietrocola F, Tajeddine N, de La Motte Rouge T, Araujo N, Morozova N, Robert T, Ripoche H, Commo F, Besse B, Validire P, Fouret P, Robin A, Gouy S, Pautier P, Jägemann N, Nickel AC, Marsili S, Paccard C, Servant N, Hupé P, Behrens C, Behnam-Motlagh P, Kohno K, Cremer I, Damotte D, Alifano M, Midttun O, Ueland PM, Lazar V, Dessen P, Zischka H, Chatelut E, Castedo M, Madeo F, Barillot E, Thomale J, Wistuba II, Sautès-Fridman C, Zitvogel L, Soria JC, Harel-Bellan A, Kroemer G. Prognostic impact of vitamin B6 metabolism in lung cancer. Cell Rep 2012 Aug 30;2(2):257–269. 
  • Menger L, Vacchelli E, Adjemian S, Martins I, Ma Y, Shen S, Yamazaki T, Sukkurwala AQ, Michaud M, Mignot G, Schlemmer F, Sulpice E, Locher C, Gidrol X, Ghiringhelli F, Modjtahedi N, Galluzzi L, André F, Zitvogel L, Kepp O, Kroemer G. Cardiac glycosides exert anticancer effects by inducing immunogenic cell death. Sci Transl Med. 2012 Jul 18;4(143):143ra99. 
  • Michels J, Vitale I, Galluzzi L, Adam J, Olaussen KA, Kepp O, Senovilla L, Talhaoui I, Guegan J, Enot DP, Talbot M, Robin A, Girard P, Oréar C, Lissa D, Sukkurwala AQ, Garcia P, Behnam-Motlagh P, Kohno K, Wu GS, Brenner C, Dessen P, Saparbaev M, Soria JC, Castedo M, Kroemer G. Cisplatin resistance associated with PARP hyperactivation. Cancer Res. 2013 Apr 1;73(7):2271-80. 
  • Zitvogel L, Galluzzi L, Viaud S, Vétizou M, Daillère R, Merad M, Kroemer G. Cancer and the gut microbiota: an unexpected link. Sci Transl Med. 2015 Jan 21;7(271):271ps1. 
  • Hannani D, Vétizou M, Enot D, Rusakiewicz S, Chaput N, Klatzmann D, Desbois M, Jacquelot N, Vimond N, Chouaib S, Mateus C, Allison JP, Ribas A, Wolchok JD, Yuan J, Wong P, Postow M, Mackiewicz A, Mackiewicz J, Schadendorff D, Jaeger D, Korman AJ, Bahjat K, Maio M, Calabro L, Teng MW, Smyth MJ, Eggermont A, Robert C, Kroemer G , Zitvogel L. ( Corresponding author). Anticancer immunotherapy by CTLA4 blockade: obligatory contribution of IL-2 receptors and negative prognostic impact of soluble CD25. Cell Res. 2015 Feb;25(2):208-24. 
  • Semeraro M, Rusakiewicz S, Minard-Colin V, Delahaye NF, Enot D, Vély F, Marabelle A, Papoular B, Piperoglou C, Ponzoni M, Perri P, Tchirkov A, Matta J, Lapierre V, Shekarian T, Valsesia-Wittmann S, Commo F, Prada N, Poirier-Colame V, Bressac B, Cotteret S, Brugieres L, Farace F, Chaput N, Kroemer G , Valteau-Couanet D, Zitvogel L ( Corresponding author). Clinical impact of the NKp30/B7-H6 axis in high-risk neuroblastoma patients. Sci Transl Med. 2015 Apr 15;7(283):283ra55. 
  • Ladoire S, Penault-Llorca F, Senovilla L, Dalban C, Enot D, Locher C, Prada N, Poirier-Colame V, Chaba K, Arnould L, Ghiringhelli F, Fumoleau P, Spielmann M, Delaloge S, Poillot ML, Arveux P, Goubar A, Andre F, Zitvogel L, Kroemer G. Combined evaluation of LC3B puncta and HMGB1 expression predicts residual risk of relapse after adjuvant chemotherapy in breast cancer. Autophagy. 2015 Oct 3;11(10):1878-90. 
  • Michels J, Adam J, Goubar A, Obrist F, Damotte D, Robin A, Alifano M, Vitale I, Olaussen KA, Girard P, Cremer I, Castedo M, Soria JC, Kroemer G. Negative prognostic value of high levels of intracellular poly (ADP-ribose) in non-small cell lung cancer. Ann Oncol. 2015 Dec;26(12):2470-7.
  • Ladoire S, Enot D, Senovilla L, Ghiringhelli F, Poirier-Colame V, Chaba K, Semeraro M, Chaix M, Penault-Llorca F, Arnould L, Poillot ML, Arveux P, Delaloge S, André F, Zitvogel L, Kroemer G. The presence of LC3B puncta and HMGB1 expression in malignant cells correlate with the immune infiltrate in breast cancer. Autophagy. 2016 May 3;12(5):864-75. 
  • Zitvogel L, Galluzzi L, Viaud S, Vétizou M, Daillère R, Merad M, Kroemer G. Cancer and the gut microbiota: an unexpected link. Sci Transl Med. 2015 Jan 21;7(271):271ps1. 
  • Zitvogel L, Ayyoub M, Routy B, Kroemer G. Microbiome and Anticancer Immunosurveillance. Cell. 2016 Apr 7;165(2):276-87. 
  • Routy B, Le Chatelier E, Derosa L, Duong CPM, Alou MT, Daillère R, Fluckiger A, Messaoudene M, Rauber C, Roberti MP, Fidelle M, Flament C, Poirier-Colame V, Opolon P, Klein C, Iribarren K, Mondragón L, Jacquelot N, Qu B, Ferrere G, Clémenson C, Mezquita L, Masip JR, Naltet C, Brosseau S, Kaderbhai C, Richard C, Rizvi H, Levenez F, Galleron N, Quinquis B, Pons N, Ryffel B, Minard-Colin V, Gonin P, Soria JC, Deutsch E, Loriot Y, Ghiringhelli F, Zalcman G, Goldwasser F, Escudier B, Hellmann MD, Eggermont A, Raoult D, Albiges L, Kroemer G , Zitvogel L. ( Corresponding author). Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science. 2018, Jan5;359(6371):91-97. 
  • Zitvogel L, Ma Y, Raoult D, Kroemer G, Gajewski TF. The microbiome in cancer immunotherapy: Diagnostic tools and therapeutic strategies. Science. 2018 Mar 23;359(6382):1366-1370. 
  • Jacquelot N, Yamazaki T, Roberti MP, Duong CPM, Andrews MC, Verlingue L, Ferrere G, Becharef S, Vétizou M, Daillère R, Messaoudene M, Enot DP, Stoll G, Ugel S, Marigo I, Foong Ngiow S, Marabelle A, Prevost-Blondel A, Gaudreau PO, Gopalakrishnan V, Eggermont AM, Opolon P, Klein C, Madonna G, Ascierto PA, Sucker A, Schadendorf D, Smyth MJ, Soria JC, Kroemer G , Bronte V, Wargo J, Zitvogel L. ( Corresponding author). Sustained type I interferon signaling as a mechanism of resistance to PD-1 blockade. Cell Res. 2019 Oct;29(10):846-861. 
  • Zitvogel L, Kroemer G. Immunostimulatory gut bacteria. Science. 2019 Nov 29;366(6469):1077-1078.
  • Zhao L, Liu P, Loos F, Marty C, Xie W, Martins I, Lachkar S, Qu B, Waeckel-Enee E, Plo I, Perez F, Lopez-Otin C, van Endert P, Zitvogel L, Kepp O, Kroemer G. Immunosuppression by mutated calreticulin released from malignant cells. Mol Cell. 2020 Feb 20;77 (4), 748-760. 
  • Fluckiger A, Daillère R, Sassi M, Sixt BS, Liu P, Loos F, Richard C, Rabu C, Alou MT, Goubet AG, Lemaitre F, Ferrere G, Derosa L, Duong CPM, Messaoudene M, Gagné A, Joubert P, De Sordi L, Debarbieux L, Simon S, Scarlata CM, Ayyoub M, Palermo B, Facciolo F, Boidot R, Wheeler R, Boneca IG, Sztupinszki Z, Papp K, Csabai I, Pasolli E, Segata N, Lopez-Otin C, Szallasi Z, Andre F, Iebba V, Quiniou V, Klatzmann D, Boukhalil J, Khelaifia S, Raoult D, Albiges L, Escudier B, Eggermont A, Mami-Chouaib F, Nistico P, Ghiringhelli F, Routy B, Labarrière N, Cattoir V, Kroemer G , Zitvogel L. ( Corresponding author). Cross-reactivity between tumor MHC class I-restricted antigens and an enterococcal bacteriophage. Science 2020 Aug 21;369(6506):936-942. 
  • Song X, Zhou Z, Li H, Xue Y, Lu X, Bahar I, Kepp O, Hung M-C. Kroemer G, Wan Y. Pharmacological suppression of B7-H4 glycosylation restores antitumor immunity in immune-cold breast cancers. Cancer Discov. 2020 Dec;10(12):1872-1893.
  • Le Naour J, Liu P, Zhao L, Adjemian S, Sauvat A, Cerrato G, Taieb J, Mulot C, Sztupinszki Z, Stoll G, Paillet J, Castoldi F, Martins I, Kepp O, Maiuri MC, Pietrocola F, Vandenabeele P, André F, Delaloge S, Szallasi Z, Laurent-Puig P, Zucman-Rossi J, Zitvogel L, Pol J, Vacchelli E, Kroemer G. TLR3 ligand reestablishes chemotherapeutic responses in the context of FPR1 deficiency. Cancer Discov. 2021 Feb;11(2):408-423.
  • Kroemer G, Zitvogel L. Subversion of calreticulin exposure as a strategy of immune escape. Cancer Cell. 2021 Apr 12;39(4):449-451.
  • Joseph A, Juncheng P, Mondini M, Labaied N, Loi M, Adam J, Lafarge A, Astesana V, Obrist F, Klein C, Bloy N, Stoll G, Signolle N, Genestie C, Damotte D, Alifano M, Leary A, Pautier P, Morice P, Gouy S, Deutsch E, Chargari C, Dieu-Nosjean MC, Cremer I, Michels J, Kroemer G , Castedo M. ( Corresponding author). Metabolic features of cancer cells impact immunosurveillance. J Immunother Cancer. 2021 Jun;9(6):e002362.
  • Terrisse S, Goubet AG, Ueda K, Thomas AM, Quiniou V, Thelemaque C, Dunsmore G, Clave E, Gamat-Huber M, Yonekura S, Ferrere G, Rauber C, Pham HP, Fahrner JE, Pizzato E, Ly P, Fidelle M, Mazzenga M, Costa Silva CA, Armanini F, Pinto F, Asnicar F, Daillère R, Derosa L, Richard C, Blanchard P, Routy B, Culine S, Opolon P, Silvin A, Ginhoux F, Toubert A, Segata N, McNeel DG, Fizazi K, Kroemer G , Zitvogel L. ( Corresponding author). Immune system and intestinal microbiota determine efficacy of androgen deprivation therapy against prostate cancer. J. Immunother Cancer. 2022 Mar;10(3):e004191.

 

Pathogenic cell stress in non-cancerous diseases 

Our team has been interested in general pathophysiology connected to cell stress pathways, hence working on a variety of distinct human diseases or suitable rodent models in which cell stress is pathogenic. This translational research has elucidated the pathomechanisms of several systemic and organ-specific diseases.

Mitochondriopathies: Our group developed and characterized the first mouse model of respiratory chain complex I deficiency induced by the knockout of apoptosis-inducing factor (AIF, official gene name AIFM1), thus generating an animal model that yields a similar phenotype as manifestations of genetic AIFM1 defects that were later discovered in patients with Cowchock syndrome, severe infantile encephalopathy and early childhood-onset axonal polyneuropathy. 

  • Miramar MD, Costantini P, Ravagnan L, Saraiva LM, Haouzi D, Brothers G, Penninger JM, Peleato ML, Kroemer G , Susin SA. ( Corresponding author). NADH oxidase activity of mitochondrial apoptosis-inducing factor. J Biol Chem. 2001 May 11;276(19):16391-8. 
  • Vahsen N, Candé C, Brière JJ, Bénit P, Joza N, Larochette N, Mastroberardino PG, Pequignot MO, Casares N, Lazar V, Feraud O, Debili N, Wissing S, Engelhardt S, Madeo F, Piacentini M, Penninger JM, Schägger H, Rustin P, Kroemer G. AIF deficiency compromises oxidative phosphorylation. EMBO J. 2004 Nov 24;23(23):4679-89. 
  • Hangen E, Féraud O, Lachkar S, Mou H, Doti N, Fimia GM, Lam NV, Zhu C, Godin I, Muller K, Chatzi A, Nuebel E, Ciccosanti F, Flamant S, Bénit P, Perfettini JL, Sauvat A, Bennaceur-Griscelli A, Ser-Le Roux K, Gonin P, Tokatlidis K, Rustin P, Piacentini M, Ruvo M, Blomgren K, Kroemer G , Modjtahedi N. ( Corresponding author). Interaction between AIF and CHCHD4 regulates respiratory chain biogenesis. Mol Cell. 2015 Jun 18;58(6):1001-14. 

Retinopathies: We elucidated caspase-independent, AIF-dependent cell death pathways in the pathogenesis of photoreceptor degeneration after retinal detachment, which is one of the most common causes of blindness in the Western world. Moreover, we described an animal model of atrophic age-related macular degeneration (AMD) that is based on the genetic deficiency of lysosomal protein LAMP2, mimicking the age-related loss of LAMP2 found in AMD patients.

  • Hisatomi T, Sakamoto T, Murata T, Yamanaka I, Oshima Y, Hata Y, Ishibashi T, Inomata H, Susin SA, Kroemer G. Relocalization of apoptosis-inducing factor in photoreceptor apoptosis induced by retinal detachment in vivo. Am J Pathol. 2001 Apr;158(4):1271-8. 
  • Hisatomi T, Sakamoto T, Sonoda KH, Tsutsumi C, Qiao H, Enaida H, Yamanaka I, Kubota T, Ishibashi T, Kura S, Susin SA, Kroemer G. Clearance of apoptotic photoreceptors: elimination of apoptotic debris into the subretinal space and macrophage-mediated phagocytosis via phosphatidylserine receptor and integrin alphavbeta3. Am J Pathol. 2003 Jun;162(6):1869-79. 
  • Notomi S, Hisatomi T, Kanemaru T, Takeda A, Ikeda Y, Enaida H, Kroemer G , Ishibashi T. ( Corresponding author). Critical involvement of extracellular ATP acting on P2RX7 purinergic receptors in photoreceptor cell death. Am J Pathol. 2011 Dec;179(6):2798-809. 
  • Notomi S, Ishihara K, Efstathiou NE, Lee JJ, Hisatomi T, Tachibana T, Konstantinou EK, Ueta T, Murakami Y, Maidana DE, Ikeda Y, Kume S, Terasaki H, Sonoda S, Blanz J, Young L, Sakamoto T, Sonoda KH, Saftig P, Ishibashi T, Miller JW, Kroemer G , Vavvas DG. ( Corresponding author). Genetic LAMP2 deficiency accelerates the age-associated formation of basal laminar deposits in the retina. Proc Natl Acad Sci U S A 2019 Nov 19;116(47):23724-23734.

Pancreatitis: We showed that the depletion of LAMP2, as it occurs in human acute pancreatitis, can lead to a pathogenic block of autophagy, predisposing mice to alcohol-induced pancreatitis. The pancreas-specific inactivation of essential autophagy genes alone causes chronic pancreatitis and exacerbates lipopolysaccharide (LPS)-induced acute pancreatic inflammation. Indeed, we found that human chronic pancreatitis is associated with local LPS accumulation.

  • Fortunato F, Bürgers H, Bergmann F, Rieger P, Büchler MW, Kroemer G, Werner J. Impaired autolysosome formation correlates with Lamp-2 depletion: role of apoptosis, autophagy, and necrosis in pancreatitis. Gastroenterology. 2009 Jul;137(1):350-60. 
  • Xia L, Xu Z, Zhou X, Bergmann F, Grabe N, Büchler MW, Neoptolemos JP, Kroemer G , Fortunato F. ( Corresponding author). Impaired autophagy incresease susceptibility to endotoxin-induced chronic pancreatitis. Cell Death Dis. 2020 Oct 21;11(10):889.

Wilson disease: We chose to elucidate the cellular mechanisms of the most frequent monogenetic lethal human diseases, cystic fibrosis (1 in 3000 individuals, see below) and Wilson disease (1 in 30,000). We demonstrated that the intracellular accumulation of copper that characterizes hepatocytes in Wilson disease causes an irreversible and lethal derangement of mitochondrial function that is counteracted by autophagy. We also showed that triethelenetetramine (trientine), which is used for the treatment of Wilson disease, acts as a potent autophagy inducer through the activation of spermidine acetyltransferase 1 (SAT1) in liver cells.

  • Zischka H, Lichtmannegger J, Schmitt S, Jägemann N, Schulz S, Wartini D, Jennen L, Rust C, Larochette N, Galluzzi L, Chajes V, Bandow N, Gilles VS, DiSpirito AA, Esposito I, Goettlicher M, Summer KH, Kroemer G. Liver mitochondrial membrane crosslinking and destruction in a rat model of Wilson disease. J Clin Invest. 2011 Apr;121(4):1508-18. 
  • Hazari Y, Galluzzi L, Bravo-San Pedro J, Hetz C, Kroemer G. Autophagy in hepatic adaptation to stress. J Hepatol. 2020 Jan;72(1):183-196. 
  • Castoldi F, Hyvönen M, Durand S, Aprahamian F, Sauvat A, Malik S, Baracco E, Vacchelli E, Opolon P, Signolle N, Lefeve D, Bossut N, Eisenberg T, Dammbrueck C, Pendl T, Kremer M, Lachkar S, Einer C, Michalke B, Zischka H, Madeo F, Keinänen T, Maiuri MC, Pietrocola F, Kroemer G. Chemical activation of SAT1 corrects diet-induced metabolic syndrome. Cell Death Differ. 2020 Oct;27(10):2904-2920.

Cystic fibrosis: In collaboration with the late Luigi Maiuri, we discovered that cystic fibrosis (also called mucoviscidosis) is linked to the suppression of autophagy in several cell types, including respiratory epithelia and macrophages. Reconstitution of the autophagic program by a combination of cysteamine (an inhibitor of transglutaminase-2) and epigallocatechin gallate (EGCG, an inhibitor of the acetyltransferase EP300) facilitates the re-expression of the mutated CFTRdel508 protein, the product of the most frequent pathogenic CFTR gene mutation, hence restoring CFTR function and reducing lung inflammation. This has been shown in mouse models (to demonstrate the on-target action of cysteamine and EGCG), as well as in two independent clinical phase 2 trials in which the combination therapy improved the diagnostic sweat test as well as signs of lung inflammation in >90% of patients with the F508del CFTR mutation.

  • Luciani A, Villella VR, Esposito S, Gavina M, Russo I, Silano M, Guido S, Pettoello-Mantovani M, Carnuccio R, Scholte B, De Matteis A, Maiuri MC, Raia V, Luini A, Kroemer G , Maiuri L. ( Corresponding author). Targeting autophagy as a novel strategy for facilitating the therapeutic action of potentiators on ΔF508 cystic fibrosis transmembrane conductance regulator. Autophagy. 2012 Nov;8(11):1657-72. 
  • De Stefano D, Villella VR, Esposito S, Tosco A, Sepe A, De Gregorio F, Salvadori L, Grassia R, Leone CA, De Rosa G, Maiuri MC, Pettoello-Mantovani M, Guido S, Bossi A, Zolin A, Venerando A, Pinna LA, Mehta A, Bona G, Kroemer G , Maiuri L, Raia V. ( Corresponding author). Restoration of CFTR function in patients with cystic fibrosis carrying the F508del-CFTR mutation. Autophagy. 2014;10(11):2053-74. 
  • Tosco A, De Gregorio F, Esposito S, De Stefano D, Sana I, Ferrari E, Sepe A, Salvadori L, Buonpensiero P, Di Pasqua A, Grassia R, Leone CA, Guido S, De Rosa G, Lusa S, Bona G, Stoll G, Maiuri MC, Mehta A, Kroemer G , Maiuri L, Raia V. ( Corresponding author). A novel treatment of cystic fibrosis acting on-target: cysteamine plus epigallocatechin gallate for the autophagy-dependent rescue of class II-mutated CFTR. Cell Death Differ. 2016 Aug;23(8):1380-93. 

Celiac disease: We found that, in celiac disease (gluten-sensitive enteropathy), a gluten/gliadin-derived peptide inhibits the chloride channel function of CFTR in intestinal epithelial cells, thereby inducing transglutaminase-2 activation, autophagy inhibition and gut inflammation. Hence, CFTR might be a ‘hub’ at which pathogenic pathways of several distinct, apparently non-related diseases converge.

  • Villella VR, Venerando A, Cozza G, Esposito S, Ferrari E, Monzani R, Spinella MC, Oikonomou V, Renga G, Tosco A, Rossin F, Guido S, Silano M, Garaci E, Chao YK, Grimm C, Luciani A, Romani L, Piacentini M, Raia V, Kroemer G , Maiuri L. ( Corresponding author). A pathogenic role for cystic fibrosis transmembrane conductance regulator in celiac disease. EMBO J. 2019 38(2): e100101.

Heart failure: In patients affected by heart failure with preserved ejection fraction (HFpEF), we measured reduced levels of nicotinamide in the plasma, as well as diminished concentrations of nicotinamide dinucleotide (NAD+) in the myocardium, as compared to undiseased controls. In several rodent models, supplementation with nicotinamide (which replenishes NAD+ levels and induces mitophagy) prevents HFpEF. Moreover, low dietary uptake of nicotinamide correlates with enhanced cardiac mortality in humans, suggesting that NAD+ depletion is causatively involved in HFpEF. We also found that human heart failure is associate with overactivation of insulin growth factor 1 receptor (IGF1R) in myocardiocytes, that transgenic overexpression of IGF1R induces HFpEF via autophagy inhibition and that blockade of IGF1R signaling improves cardiac aging.

  • Abdellatif M, Trummer-Herbst V, Koser F, Durand S, Adão R, Vasques-Nóvoa F, Freundt JK, Voglhuber J, Pricolo MR, Kasa M, Türk C, Aprahamian F, Herrero-Galán E, Hofer SJ, Pendl T, Rech L, Kargl J, Anto-Michel N, Ljubojevic-Holzer S, Schipke J, Brandenberger C, Auer M, Schreiber R, Koyani CN, Heinemann A, Zirlik A, Schmidt A, von Lewinski D, Scherr D, Rainer PP, von Maltzahn J, Mühlfeld C, Krüger M, Frank S, Madeo F, Eisenberg T, Prokesch A, Leite-Moreira AF, Lourenço AP, Alegre-Cebollada J, Kiechl S, Linke WA, Kroemer G , Sedej S. ( Corresponding author). Nicotinamide for the treatment of heart failure with preserved ejection fraction. Sci Transl Med. 2021 Feb 10;13(580):eabd7064.
  • Abdellatif M, Sedej S, Kroemer G. NAD+ metabolism in cardiac health, aging and disease. Circulation. 2021 Nov 30;144(22):1795-1817. 
  • Abdellatif M, Trummer-Herbst V, Martin Heberle A, Humnig A, Pendl T, Durand S, Cerrato G, Hofer SJ, Islam M, Voglhuber J, Pittol JMR, Kepp O, Hoefler G, Schmidt A, Rainer PP, Scherr D, von Lewinski D, Bisping E, McMullen JR, Diwan A, Eisenberg T, Madeo F, Thedieck K, Kroemer G, Sedej S. Fine-Tuning Cardiac Insulin/Insulin-Like Growth Factor 1 Receptor Signaling to Promote Health and Longevity. Circulation. 2022 Jun 21;145(25):1853-1866.

Cholangitis: We found an explanation for the epidemiological observation that primary sclerosing cholangitis (PSC) but not primary biliary cirrhosis (PBC) is linked to an elevated risk of developing cholangiocarcinoma. Indeed, in mouse models, PBC (but not PSC) is coupled to T and B-lymphocyte-mediated autoimmune reactions that improve the immunosurveillance against cholangiocarcinoma. These findings gave rise to the concept of ‘beneficial autoimmunity’ in tumor immunology.

  • Paillet J, Plantureux C, Lévesque S, Le Naour J, Stoll G, Sauvat A, Caudana P, Tosello Boari J, Bloy N, Lachkar S, Martins I, Opolon P, Checcoli A, Delaune A, Robil N, de la Grange P, Hamroune J, Letourneur F, Autret G, Leung PSC, Gershwin ME, Zhu JS, Kurth MJ, Lekbaby B, Augustin J, Kim Y, Gujar S, Coulouarn C, Fouassier L, Zitvogel L, Piaggio E, Housset C, Soussan P, Maiuri MC, Kroemer G , Pol JG. ( Corresponding author). Autoimmunity affecting the biliary tract fuels the immunosurveillance of cholangiocarcinoma. J Exp Med. 2021 Oct 4;218(10):e20200853.

Anorexia and obesity: We identified acyl coenzyme A-binding protein (ACBP), also known as diazepam binding inhibitor (DBI), as an extracellular autophagy-inhibitory factor that is elevated in human aging and obesity, associated with features of metabolic syndrome. In preclinical experiments, ACBP/DBI has an obesogenic effect by activating orexigenic neurons (to stimulate appetite) and by eliciting lipo-anabolism and adipogenesis. ACBP/DBI turned out to be the phylogenetically most ancient appetite stimulator, exerting this function already in yeast and nematodes. We found that ACBP/DBI is reduced in the plasma of anorexia nervosa patients and that its genetic or antibody-mediated neutralization has anorexigenic and lipolytic effects in mice. ACBP/DBI is (one of) the most important peripheral body mass regulator(s) in mammalian physiology. Indeed, we observed that ACBP/DBI acts on gamma-aminobutyric acid A (GABAA) receptors to stimulate the transcription factor PPAR, which then transactivates the ACBP/DBI gene. This obesogenic feedback loop is not only involved in excessive calorie uptake but also explains the weight-gain inducing side effects of thiazolidinedione antidiabetics such as rosiglitazone, which is an PPAR agonists.

  • Bravo-San Pedro JM, Sica V, Martins I, Pol J, Loos F, Maiuri MC, Durand S, Bossut N, Aprahamian F, Anagnostopoulos G, Niso-Santano M, Aranda F, Ramírez-Pardo I, Lallement J, Denom J, Boedec E, Gorwood P, Ramoz N, Clément K, Pelloux V, Rohia A, Pattou F, Raverdy V, Caiazzo R, Denis RGP, Boya P, Galluzzi L, Madeo F, Migrenne-Li S, Cruciani-Guglielmacci C, Tavernarakis N, López-Otín C, Magnan C, Kroemer G. Acyl-CoA-binding protein is a lipogenic factor that triggers food intake and obesity. Cell Metab. 2019 Sep 3;30(3):462-476.
  • Charmpilas N, Ruckenstuhl C, Sica V, Büttner S, Habernig L, Dichtinger S, Madeo F, Tavernarakis N, Bravo-San Pedro JM, Kroemer G. Acyl-CoA-binding protein (ACBP): a phylogenetically conserved appetite stimulator. Cell Death Dis. 2020 Jan 6;11(1):7
  • Joseph A, Moriceau S, Sica V, Anagnostopoulos G, Pol J, Martins I, Lafarge A, Maiuri MC, Leboyer M, Loftus J, Bellivier F, Belzeaux R, Berna F, Etain B, Capdevielle D, Courtet P, Dubertret C, Dubreucq J, Thierry A, Fond G, Gard S, Llorca PM, Mallet J, Misdrahi D, Olié E, Passerieux C, Polosan M, Roux P, Samalin L, Schürhoff F, Schwan R; FACE-SZ and FACE-BD (FondaMental Academic Centers of Expertise, for Schizophrenia and for Bipolar Disorder) Groups, Magnan C, Oury F, Bravo-San Pedro JM, Kroemer G. Metabolic and psychiatric effects of acyl coenzyme A binding protein (ACBP)/diazepam binding inhibitor (DBI). Cell Death Dis. 2020 Jul 6;11(7):502.
  • Joseph A, Chen H, Anagnostopoulos G, Montégut L, Lafarge A, Motiño O, Castedo M, Maiuri MC, Clément K, Terrisse S, Martin AL, Vaz-Luis I, Andre F, Grundler F, de Toledo FW, Madeo F, Zitvogel L, Goldwasser F, Blanchet B, Fumeron F, Roussel R, Martins I, Kroemer G. Effects of acyl-coenzyme A binding protein (ACBP)/diazepam-binding inhibitor (DBI) on body mass index. Cell Death Dis. 2021 Jun 9;12(6):599.
  • Anagnostopoulos G, Motiño O, Li S, Carbonnier V, Chen H, Sica V, Durand S, Bourgin M, Aprahamian F, Nirmalathasan N, Donne R, Desdouets C, Sola MS, Kotta K, Montégut L, Lambertucci F, Surdez D, Sandrine G, Delattre O, Maiuri MC, Bravo-SanPedro JM, Martins I, Kroemer G. An obesogenic feedforward loop involving PPARγ, acyl-CoA binding protein and GABAA receptor. Cell Death Dis. 2022 Apr 18;13(4):356.


Autophagy as (one of) the primordial antiaging mechanism(s)

Our team invalidated the historically wide-spread idea that autophagy would be a mechanism of cellular suicide, showing that autophagy usually has a cytoprotective function and hence avoids the premature death of stressed cells. Instead, we pioneered the hypothesis that most if not all longevity extending manipulations, be they genetic (e.g. knockout of the TP53 orthologue in C. elegans), pharmacological (e.g. treatment with resveratrol or spermidine) or metabolic (e.g. caloric restriction), must induce autophagy to be efficient. Indeed, in our opinion, autophagy should be conceived as a cytoplasmic recycling and rejuvenation mechanisms that protects cells from stress and, in addition, slows down biological clocks involved in the aging process for which we defined the cellular and molecular ‘hallmarks’ in two landmark reviews in Cell in 2013 and 2023.

We launched the concept that life style factors that favor metabolic syndrome, including excessive carbohydrate intake and obesity, act through the inhibition of autophagy to accelerate the manifestation of age-related diseases. Indeed, pharmacological autophagy induction combats metabolic syndrome. We accumulated extensive evidence that the nucleocytosolic pool of acetyl coenzyme A and cytoplasmic protein acetylation repress autophagy, mechanistically linking excessive caloric intake to autophagy inhibition. We also found that trans-unsaturated fatty acids inhibit autophagy induced by saturated fatty acids, thus explaining their cardiometabolic toxicity.

We coined the concept of ‘caloric restriction mimetics’ (CRMs), which are non-toxic agents that induce autophagy via protein deacetylation reactions. We identified the natural polyamine spermidine as a prototypic CRM that reduces protein acetylation to induce autophagy and to extend life span in yeast, nematodes, flies and mice. Accordingly, in humans, high nutritional uptake of spermidine is associated with reduced cardiovascular and cancer-related mortality, as well as a decreased risk of cognitive impairment. We showed that spermidine supplementation reduces the age-associated cardiac morbidity and mortality in rodents via the induction of autophagy in myocardiocytes. In mice, spermidine also improves the immune control of cancers and reverses the age-associated cognitive decline. We discovered that aspirin acts as a pro-autophagic CRM, explaining its cardioprotective and oncopreventive effects, as well as its antiobese and antidiabetic action. We developed phenotypic high-throughput screening systems to identify new CRMs and demonstrated that such agents, including several chalcones, actually confer autophagy-dependent life span extension and cardioprotection to flies and mice, respectively.

We observed that pharmacological autophagy inducers (such as inhibitors of PKB/AKT and insulin-like growth factor-1 receptor) and CRMs including aspirin, chalcones, hydroxycitrate (an inhibitor of the acetyl coenzyme A-producing enzyme ATP citrate lyase) and spermidine facilitate the induction of anticancer immune responses, an effect that requires autophagy induction in tumor cells. In addition, we found that nicotinamide, yet another autophagy/mitophagy inducer, delays the manifestation and progression of hormone-induced mammary carcinomas through immune-dependent pathways. Thus, it appears that multiple CRMs can extend healthspan while improving anticancer immunosurveillance. We also found that fasting, ketogenic diet and oral supplementation of ketone bodies favor antitumor immune responses.

We identified acyl coenzyme A-binding protein (ACBP), also known as diazepam binding inhibitor (DBI), as an extracellular autophagy checkpoint. The plasma concentrations of ACBP/DBI increase in human aging, correlating with cardiometabolic risk factors and inflammatory markers, and are particularly elevated in individuals that are on the verge of developing cardiovascular disease or cancer. Hence, circulating ACBP/DBI is a biomarker of biological aging. We showed that knockout of the ACBP/DBI orthologue in yeast extends chronological lifespan in an autophagy-dependent fashion. Since ACBP/DBI inhibits autophagy, its genetic or antibody-mediated neutralization induces cytoprotective autophagy and simultaneously dampens inflammation in mice, hence protecting different organs (e.g. heart, liver, lung) against acute or chronic damage. The neutralization of ACBP/DBI also inhibits tissue fibrosis and cellular senescence. Based on these results, we launched the concept that monoclonal antibodies neutralizing ACBP/DBI act as ‘autophagy checkpoint inhibitors’ with broad health improving effects.

Based on our knowledge of molecular and cellular pathophysiology, we defined the ‘hallmarks of health’, which are organizational features maintaining organismal homeostasis across all subcellular, cellular and supracellular strata. Autophagy contributes to the maintenance of health through stress-adaptive and antiaging effects.

Principal references:

  • Boya P, Gonzalez-Polo RA, Casares N, Perfettini JL, Dessen P, Larochette N, Metivier D, Meley D, Souquere S, Yoshimori T, Pierron G, Codogno P, Kroemer G. Inhibition of macroautophagy triggers apoptosis. Mol Cell Biol. 2005 Feb;25(3):1025-40. 
  • Levine B, Kroemer G. Autophagy in the pathogenesis of disease. Cell 2008 Jan11; 132(1):27-42. 
  • Tavernarakis N, Pasparaki A, Tasdemir E, Maiuri MC, Kroemer G. The effects of p53 on whole organism longevity are mediated by autophagy. Autophagy. 2008 Oct;4(7):870-3. 
  • Madeo F, Eisenberg T, Kroemer G. Autophagy for the avoidance of neurodegeneration. Genes Dev. 2009 Oct 1;23(19):2253-9. 
  • Eisenberg T, Knauer H, Schauer A, Büttner S, Ruckenstuhl C, Carmona-Gutierrez D, Ring J, Schroeder S, Magnes C, Antonacci L, Fussi H, Deszcz L, Hartl R, Schraml E, Criollo A, Megalou E, Weiskopf D, Laun P, Heeren G, Breitenbach M, Grubeck-Loebenstein B, Herker E, Fahrenkrog B, Fröhlich KU, Sinner F, Tavernarakis N, Minois N, Kroemer G , Madeo F. ( Corresponding author). Induction of autophagy by spermidine promotes longevity. Nat Cell Biol. 2009 Nov;11(11):1305-14. 
  • Madeo F, Tavernarakis N, Kroemer G. Can autophagy promote longevity? Nat Cell Biol. 2010 Sep;12(9):842-6. 
  • Morselli E, Maiuri MC, Markaki M, Megalou E, Pasparaki A, Palikaras K, Criollo A, Galluzzi L, Malik SA, Vitale I, Michaud M, Madeo F, Tavernarakis N, Kroemer G. Caloric restriction and resveratrol promote longevity through the Sirtuin-1-dependent induction of autophagy. Cell Death Dis. 2010;1:e10. 
  • Kroemer G, Marino G, Levine B. Autophagy and the integrated stress response. Mol Cell. 2010 Oct 22;40(2):280-93. 
  • Morselli E, Marino G, Bennetzen M, Eisenberg T, Megalou E, Schroeder S, Carbrera S, Bénit P, Rustin P, Criollo A, Shen S, Kepp O, Miauri C, Horio Y, Lopez-Otin C, Andersen JS, Tavernarakis N, Madeo F, Kroemer G. Spermidine and resveratrol induce autophagy by distinct yet convergent pathways affecting the acetylproteome. J Cell Biol. 2011 Feb 21;192(4):615-29. 
  • Rubinsztein D, Marino G, Kroemer G. Autophagy and aging. Cell 2011 Sept 2; 146(5):682-695. 
  • López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G. The hallmarks of aging. Cell. 2013 Jun 6;153(6):1194-217. 
  • Eisenberg T, Schroeder S, Andryushkova A, Pendl T, Küttner V, Bhukel A, Mariño G, Pietrocola F, Harger A, Zimmermann A, Moustafa T, Sprenger A, Jany E, Büttner S, Carmona-Gutierrez D, Ruckenstuhl C, Ring J, Reichelt W, Schimmel K, Leeb T, Moser C, Schatz S, Kamolz LP, Magnes C, Sinner F, Sedej S, Fröhlich KU, Juhasz G, Pieber TR, Dengjel J, Sigrist SJ, Kroemer G , Madeo F ( Corresponding and co-senior author). Nucleocytosolic depletion of the energy metabolite acetyl coenzyme A stimulates autophagy and prolongs lifespan. Cell Metab. 2014 Mar 4;19(3):431-44. 
  • Mariño G, Pietrocola F, Eisenberg T, Kong Y, Malik SA, Andryushkova A, Schroeder S, Pendl T, Harger A, Niso-Santano M, Zamzami N, Scoazec M, Durand S, Enot DP, Fernández ÁF, Martins I, Kepp O, Senovilla L, Bauvy C, Morselli E, Vacchelli E, Bennetzen M, Magnes C, Sinner F, Pieber T, López-Otín C, Maiuri MC, Codogno P, Andersen JS, Hill JA, Madeo F, Kroemer G. Regulation of autophagy by cytosolic acetyl coenzyme A. Mol Cell. 2014 Mar 6;53(5):710-25. 
  • Madeo F, Zimmermann A, Maiuri MC, Kroemer G. Essential role for autophagy in life span extension. J Clin Invest. 2015 Jan;125(1):85-93. 
  • Rockenfeller P, Koska M, Pietrocola F, Minois N, Knittelfelder O, Sica V, Franz J, Carmona-Gutierrez D, Kroemer G , Madeo F. ( Corresponding author). Phosphatidylethanolamine positively regulates autophagy and longevity. Cell Death Differ. 2015 Mar;22(3):499-508. 
  • Niso-Santano, Malik SA, Pietrocola F, Bravo-San Pedro JM, Marino G, Coanfanelli V, Ben-Younes A, Troncoso R, Markaki M, Sica V, Izzo V, Chaba K, Bauvy C, Dupont N, Kepp O, Rockenfeller P, Wolinski H, Madeo F, Lavandero S, Codogno P, Harper F, Pierron G, Tavernarakis N, Cecconi F, Maiuri MC, Galluzzi L, Kroemer G. Unsaturated fatty acids induce non-canonical autophagy. EMBO J. 2015 Apr 15;34(8):1025-41. 
  • Pietrocola F, Galluzzi L, Bravo-San Pedro JM, Madeo F, Kroemer G. Acetyl-coenzyme A: a central metabolite and second messenger. Cell Metab. 2015 Jun 2;21(6):805-821. 
  • Sica V, Galluzzi L, Bravo-San Pedro JM, Izzo V, Maiuri MC, Kroemer G. Organelle-specific initiation of autophagy. Mol Cell. 2015 Aug 20;59(4):522-39. 
  • Pietrocola F, Pol J, Vacchelli E, Rao S, Enot DP, Baracco EE, Levesque S, Castoldi F, Jacquelot N, Yamazaki T, Senovilla L, Marino G, Aranda F, Durand S, Sica V, Chery A, Lachkar S, Sigl V, Bloy N, Buque A, Falzoni S, Ryffel B, Apetoh L, Di Virgilio F, Madeo F, Maiuri MC, Zitvogel L, Levine B, Penninger JM, Kroemer G. Caloric restriction mimetics enhance anticancer immunosurveillance. Cancer Cell. 2016 Jul 11;30(1):147-60. 
  • López-Otín C, Galluzzi L, Freije JM, Madeo F, Kroemer G. Metabolic control of longevity. Cell. 2016 Aug 11;166(4):802-21. 
  • Eisenberg T, Abdellatif M, Schroeder S, Primessnig U, Stekovic S, Pendl T, Harger A, Schipke J, Zimmermann A, Schmidt A, Tong M, Ruckenstuhl C, Dammbrueck C, Gross AS, Herbst V, Magnes C, Trausinger G, Narath S, Meinitzer A, Hu Z, Kirsch A, Eller K, Carmona-Gutierrez D, Büttner S, Pietrocola F, Knittelfelder O, Schrepfer E, Rockenfeller P, Simonini C, Rahn A, Horsch M, Moreth K, Beckers J, Fuchs H, Gailus-Durner V, Neff F, Janik D, Rathkolb B, Rozman J, de Angelis MH, Moustafa T, Haemmerle G, Mayr M, Willeit P, von Frieling-Salewsky M, Pieske B, Scorrano L, Pieber T, Pechlaner R, Willeit J, Sigrist SJ, Linke WA, Mühlfeld C, Sadoshima J, Dengjel J, Kiechl S, Kroemer G, Sedej S, Madeo F. ( Corresponding author). Cardioprotection and lifespan extension by the natural polyamine spermidine. Nat Med. 2016 Dec;22(12):1428-1438. 
  • Bravo-San Pedro JM, Kroemer G , Galluzzi L. ( Corresponding author). Autophagy and mitophagy in cardiovascular disease. Circ Res. 2017 May 26;120(11):1812-1824. 
  • Madeo F, Eisenberg T, Pietrocola F, Kroemer. Spermidine in health and disease. Science. 2018 Jan 26;359(6374): 410. 
  • Pietrocola F, Castoldi F, Markaki M, Lachkar S, Chen G, Enot DP, Durand S, Bossut N, Tong M, Malik SA, Loos F, Dupont N, Mariño G, Abdelkader N, Madeo F, Maiuri MC, Kroemer R, Codogno P, Sadoshima J, Tavernarakis N, Kroemer G. Aspirin recapitulates features of caloric restriction. Cell Rep. 2018 Feb 27;22(9):2395-2407. 
  • Sauvat A, Chen G, Müller K, Tong M, Bezu L, Leduc M, Franz J, Rockenfell R; Sadoshima J, Madeo F, Kepp O, Kroemer G. Trans-fats inhibit autophagy induced by saturated fatty acids. eBiomedicine. 2018 Apr;30:261-272. 
  • Abdellatif M, Sedej S, Carmona-Gutierrez D, Madeo F, Kroemer G. Autophagy in cardiovascular aging. Circ Res. 2018 Sep 14;123(7):803-824. 
  • Kroemer G, López-Otín C, Madeo F, de Cabo R. Carbotoxicity-Noxious effects of carbohydrates. Cell. 2018 Oct 18;175(3):605-614. 
  • Levine B, Kroemer G. Biological functions of autophagy genes: a disease perspective. Cell. 2019 Jan 10;176(1-2):11-42. 
  • Carmona-Gutierrez D, Zimmermann A, Kainz K, Pietrocola F, Chen G, Maglioni S, Schiavi A, Nah J, Mertel S, Beuschel CB, Castoldi F, Sica V, Trausinger G, Raml R, Sommer C, Schroeder S, Hofer SJ, Bauer MA, Pendl T, Tadic J, Dammbrueck C, Hu Z, Ruckenstuhl C, Eisenberg T, Durand S, Bossut N, Aprahamian F, Abdellatif M, Sedej S, Enot DP, Wolinski H, Dengjel J, Kepp O, Magnes C, Sinner F, Pieber TR, Sadoshima J, Ventura N, Sigrist SJ, Kroemer G , Madeo F. F ( Corresponding author). The flavonoid 4,4'-dimethoxychalcone promotes autophagy-dependent longevity across species. Nat Commun. 2019 Feb 19;10(1):651. 
  • Madeo F, Carmona-Gutierrez D, Hofer SJ, Kroemer G. Caloric restriction mimetics against age-associated disease: Targets, mechanisms, and therapeutic potential. Cell Metab. 2019 Mar 5;29(3):592-610. 
  • Chen G, Xie W, Nah J, Sauvat A, Liu P, Pietrocola F, Sica V, Carmona-Gutierrez D, Zimmermann A, Pendl T, Tadic J, Bergmann M, Hofer SJ, Domuz L, Lachkar S, Markaki M, Tavernarakis N, Sadoshima J, Madeo F, Kepp O, Kroemer G. 3,4-Dimethoxychalcone induces autophagy through activation of the transcription factors TFE3 and TFEB. EMBO Mol Med. 2019 Nov 7;11(11):e10469. 
  • Wang Y, Xie W, Humeau J, Chen G, Liu P, Pol J, Zhang Z, Kepp O, Kroemer G. Autophagy induction by thiostrepton improves the efficacy of immunogenic chemotherapy. J Immunother Cancer. 2020 Mar;8(1):e000462. 
  • Buqué A, Bloy N, Perez-Lanzón M, Iribarren K, Humeau J, Pol JG, Levesque S, Mondragon L, Yamazaki T, Sato A, Aranda F, Durand S, Boissonnas A, Fucikova J, Senovilla L, Enot D, Hensler M, Kremer M, Stoll G, Hu Y, Massa C, Formenti SC, Seliger B, Elemento O, Spisek R, André F, Zitvogel L, Delaloge S, Kroemer G , Galluzzi L ( Corresponding author). Immunoprophylactic and immunotherapeutic control of hormone receptor-positive breast cancer. Nat Commun. 2020 Jul 30;11(1):3819. 
  • López-Otín C, Kroemer G. Hallmarks of health. Cell. 2021 Jan 7;184(1):33-63. 
  • Ferrere G, Tidjani Alou M, Liu P, Goubet AG, Fidelle M, Kepp O, Durand S, Iebba V, Fluckiger A, Daillère R, Thelemaque C, Grajeda-Iglesias C, Alves Costa Silva C, Aprahamian F, Lefevre D, Zhao L, Ryffel B, Colomba E, Arnedos M, Drubay D, Rauber C, Raoult D, Asnicar F, Spector T, Segata N, Derosa L, Kroemer G , Zitvogel L. ( Corresponding author). Ketogenic diet and ketone bodies enhance the anticancer effects of PD1 blockade. JCI Insight. 2021 Jan 25;6(2):145207. 
  • Cerrato G, Leduc M, Müller K, Humeau J, Kepp O, Sauvat A, Kroemer G. Oleate-induced aggregation of LC3 at the trans-Golgi network is linked to a protein trafficking blockade. Cell Death Differ 2021 May;28(5):1733-1752.
  • Wu Q, Tian AL, Li B, Leduc M, Forveille S, Hamley P, Galloway W, Xie W, Liu P, Zhao L, Zhang S, Hui P, Madeo F, Tu Y, Kepp O, Kroemer G. IGF1 receptor inhibition amplifies the effects of cancer drugs by autophagy and immune-dependent mechanisms. J Immunother Cancer. 2021 Jun;9(6):e002722.
  • Mittelbrunn M, Kroemer G. Hallmarks of T cell aging. Nature Immunol. 2021 Jun;22(6):687-698. 
  • Montégut L, De Cabo R, Zitvogel L, Kroemer G. Science-driven nutritional interventions for the prevention and treatment of cancer. Cancer Discovery. 2022 Oct 5;12(10):2258-2279.
  • Motiño O, Lambertucci F, Anagnostopoulos G, Li S, Nah J, Castoldi F, Senovilla L, Montégut L, Chen H, Durand S, Bourgin M, Aprahamian F, Nirmalathasan N, Alvarez-Valadez K, Sauvat A, Carbonnier V, Djavaheri-Mergny M, Pietrocola F, Sadoshima J, Maiuri MC, Martins I, Kroemer G. ACBP/DBI protein neutralization confers autophagy-dependent organ protection through inhibition of cell loss, inflammation, and fibrosis. Proc Natl Acad Sci U S A. 2022 Oct 11;119(41):e2207344119.
  • Montégut L, Joseph A, Chen H, Abdellatif M, Ruckenstuhl C, Motiño O, Lambertucci F, Anagnostopoulos G, Lachkar S, Dichtinger S, Maiuri MC, Goldwasser F, Blanchet B, Fumeron F, Martins I, Madeo F, Kroemer G. High plasma concentrations of acyl-coenzyme A binding protein (ACBP) predispose to cardiovascular disease: Evidence for a phylogenetically conserved proaging function of ACBP. Aging Cell. 2022 Dec 12:e13751. 
  • Hofer SJ, Simon AK, Bergmann M, Kroemer G , Madeo F. ( Corresponding author). Mechanisms of spermidine-induced autophagy and geroprotection. Nat Aging. In press
  • López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G. The hallmarks of aging: an expanding universe. Cell. In press
  • López-Otín C, Pietrocola F, Roiz-Valle D, Galluzzi L, Kroemer G. Meta-hallmarks of aging and cancer. Cell Metab. In press


Methodological developments and technology platforms

Our team developed methods to measure cell stress and death by a variety of different approaches including flow cytofluorometry, image cytometry, immunohistochemistry, fluorescence microscopy, gene-encoded or chemical fluorescent biosensors, transmission electron microscopy, subcellular fractionation techniques and cell-free assays, as published in 21 protocols/papers in Methods in Cell Biology, 20 in Methods in Enzymology, 15 in Methods in Molecular Biology, 2 in Autophagy, 2 in Cytometry, 2 in Computers in Biology and Medicine, 2 in Oncotarget, 2 in STAR Protocols, as well as single papers in Annals in Biochemistry, Apoptosis, Cell Cycle, Cell Death & Disease, Experimental Cell Research, Molecular & Cellular Oncology and Immunology Letters. Together with Franck Perez (Institut Curie, Paris), we developed a chemical-genetic tool box (the RUSH system for ‘retention using selective hooks’) for high-throughput screens (2 x Scientific Reports, Frontiers in Cellular and Developmental Biology) and in vivo applications (Cell Death & Differentiation, Molecular Cell). We also built a dendritic cell genotype-phenotype screening platform based on the use of reversibly immortalized dendritic cell precursors (papers in Cancer Discovery and STAR Protocols).

Using these cell biology-relevant methods, we constructed the largest robotized fluorescence videomicroscopy-based phenotypic screening platform in European Academia, generating multiple assays for high-content, high-throughput screening campaigns, including the discovery of pharmacological inducers of immunogenic cell death (ICD), small-molecule autophagy enhancers dubbed as “caloric restriction mimetics” (CRMs), and dendritic cell genotype-phenotype relationships. This has become possible thanks to major grants (PACRI in 2013 and ONCO-PHENO-SCREEN in 2022) obtained from the French government, as well as thanks to collaborative research projects with multiple industrial parners.

We improved methods for proteomics and metabolomics (papers in Electrophoresis and Cell Metabolism) and built one of the largest European mass spectrometric facilities, focusing on the intracellular metabolome and disease-relevant metabolic shifts. We also developed methods for spatially resolved metabolomics applicable to tissue sections and cell cultures.

We optimized biostatistical software for co-localization of fluorescent signals (ColocalizR, freely available online at https://github.com/kroemerlab/ColocalizR), for treating imaging flow cytometry data (at https://cran.r-project.org/web/packages/IFC), for analyzing tumor growth in preclinical models (TumGrowth, freely available online at https://kroemerlab.shinyapps.io/TumGrowth/), for predicting the capacity of chemical agents to induce immunogenic cell death (ICD) at https://github.com/kroemerlab/ICDpred and for modeling signaling pathways invoved in ICD (MaBoSS 2.0, available online at https://maboss.curie.fr).

We used artificial intelligence to calculate the probability of pharmacological agents to induce immunogenic cell death based on their physicochemical characteristics (papers in Cell Death & Differentiation and Nature Reviews Clinical Oncology), as well as for automatic image analyses (2 papers in Computational Biology & Medicine).

 

Reviews and position papers in Annual Reviews and Nature Reviews

To foster the in-depth comprehension of cellular stress and death in health and disease, including the cancer-immunity dialogue, we have written 45 articles that analyze, synthesize and conceptualize the state-of-the-art of the research area for Nature Reviews or Annual Reviews.

  • Kroemer G, Dallaporta B, Resche-Rigon M. The mitochondrial death/life regulator in apoptosis and necrosis. Annu Rev Physiol. 1998;60:619-42. 
  • Zamzami N, Kroemer G. The mitochondrion in apoptosis: how Pandora's box opens. Nat Rev Mol Cell Biol. 2001 Jan;2(1):67-71. 
  • Zhivotovsky B, Kroemer G. Apoptosis and genomic instability. Nat Rev Mol Cell Biol. 2004 Sep;5(9):752-62. 
  • Kroemer G, Jäättelä M. Lysosomes and autophagy in cell death control. Nat Rev Cancer. 2005 Nov;5(11):886-97. 
  • Faivre S, Kroemer G, Raymond E. Current development of mTOR inhibitors as anticancer agents. Nat Rev Drug Discov. 2006 Aug;5(8):671-88. 
  • Zitvogel L, Tesniere A, Kroemer G. Cancer despite immunosurveillance: immunoselection and immunosubversion. Nat Rev Immunol. 2006 Oct;6(10):715-27. 
  • Maiuri MC, Zalckvar E, Kimchi A, Kroemer G. Self-eating and self-killing: crosstalk between autophagy and apoptosis. Nat Rev Mol Cell Biol. 2007 Sep;8(9):741-52. 
  • Zitvogel L, Apetoh L, Ghiringhelli F, Kroemer G. Immunological aspects of chemotherapy. Nat Rev Immunol. 2008 Jan;8(1):59-73. 
  • Kroemer G, Levine B. Autophagic cell death: the story of a misnomer. Nat Rev Mol Cell Biol. 2008 Dec;9(12):1004-10. 
  • Green DR, Ferguson T, Zitvogel L, Kroemer G. Immunogenic and tolerogenic cell death. Nat Rev Immunol. 2009 May;9(5):353-63. 
  • Galluzzi L, Blomgren K, Kroemer G. Mitochondrial membrane permeabilization in neuronal injury. Nat Rev Neurosci. 2009 Jul;10(7):481-94. 
  • Fulda S, Galluzzi L, Kroemer G. Targeting mitochondria for cancer therapy. Nat Rev Drug Discov. 2010 Jun;9(6):447-64. 
  • Vandenabeele P, Galluzzi L, Vanden Berghe T, Kroemer G. Molecular mechanisms of necroptosis: an ordered cellular explosion. Nat Rev Mol Cell Biol. 2010 Oct;11(10):700-14. 
  • Kepp O, Galluzzi L, Yuan J, Kroemer G. Cell death assays for drug discovery. Nat Rev Drug Discov. 2011 Mar;10(3):221-37. 
  • Zitvogel L, Kepp O, Kroemer G. Immune parameters affecting the efficacy of chemotherapeutic regimens. Nat Rev Clin Oncol. 2011 Mar;8(3):151-60. 
  • Vitale I, Galluzzi L, Castedo M, Kroemer G. Mitotic catastrophe: a mechanism for avoiding genomic instability. Nat Rev Mol Cell Biol. 2011 Jun;12(6):385-92. 
  • Galluzzi L, Senovilla L, Zitvogel L, Kroemer G. The secret ally: immunostimulation by anticancer drugs. Nat Rev Drug Discov. 2012 Feb 3;11(3):215-33. 
  • Galluzzi L, Kepp O, Kroemer G.Mitochondria: master regulators of danger signaling. Nat Rev Mol Cell Biol. 2012 Nov23;13(12):780-8. 
  • Kroemer G, Galluzzi L, Kepp O, Zitvogel L. Immunogenic cell death in cancer therapy. Annu Rev Immunol 2013 Mar 21;31:51-72. 
  • Galluzzi L, Kepp O, Vander Heiden M, Kroemer G. Metabolic targets for cancer therapy. Nat Rev Drug Discov. 2013 Nov;12(11):829-46. 
  • Marino G, Niso-Santano M, Baerecke EH, Kroemer G. Self-consumption: the interplay of autophagy and apoptosis. Nat Rev Mol Cell Biol. 2014 Feb;15(2):81-94. 
  • Madeo F, Pietrocola F, Eisenberg T, Kroemer G. Caloric restriction mimetics: towards a molecular definition. Nat Rev Drug Discov. 2014 Oct;13(10):727-40. 
  • Zitvogel L, Galluzzi L, Smyth M, Kroemer G. Type I interferons in anticancer immunity. Nat Rev Immunol. 2015 Jul;15(7):405-14. 
  • Zitvogel L, Rusakiewicz S, Routy B, Ayyoub M, Kroemer G. Immunological off-target effects of imatinib. Nat Rev Clin Oncol. 2016 Jul;13(7):431-46. 
  • Galluzzi L, Blomgren K, Kroemer G. Autophagy in acute brain damage. Nat Rev Neurosci. 2016 Aug;17(8):467-84. 
  • Zitvogel L, J Pitt, Smyth MJ, Kroemer G. Mouse models for oncoimmunology. Nat Rev Cancer. 2016 Dec;16(12):759-773. 
  • Galluzzi L, Kepp O, Chan FKM, Kroemer G. Necroptosis: mechanisms and relevance to disease. Annu Rev Pathol. 2017 Jan 24;12:103-130. 
  • Galluzzi L, Buqué A, Kepp O, Zitvogel L, Kroemer G. Immunogenic cell death in cancer and infectious disease. Nat Rev Immunol. 2017 Feb;17(2):97-111. 
  • Galluzzi L, Bravo-San Pedro JM, Demaria S, Formenti SC, Kroemer G. Activating autophagy to potentiate immunogenic chemotherapy and radiation therapy. Nat Rev Clin Oncol. 2017 Apr;14(4):247-258. 
  • Galluzzi L, Bravo-San Pedro JM, Levine B, Green DR, Kroemer G. Pharmacological modulation of autophagy: therapeutic potential and persisting obstacles. Nat Rev Drug Discov. 2017 Jul;16(7):487-511. 
  • Zitvogel L, Daillère R, Roberti MP, Routy B, Kroemer G. Anticancer effects of the microbiome and its products. Nat Rev Microbiol. 2017 Aug;15(8):465-478. 
  • Fridman WH, Zitvogel L, Sautès-Fridman C, Kroemer. The immune contexture in cancer prognosis and treatment. Nat Rev Clin Oncol. 2017 Dec;14(12):717-734. 
  • Bantug GR, Kroemer G, Galluzzi L, Hess C. The spectrum of T cell metabolism in health and disease. Nat Rev Immunol. 2018 Jan;18(1):19-34. 
  • Kroemer G, Zitvogel L. Cancer immunotherapy in 2017:The breakthrough of the microbiota. Nat Rev Immunol. 2018 Jan 30;18(2):87-88. 
  • Routy B, Gopalakrishnan V, Daillère R, Zitvogel L, Wargo JA, Kroemer. Gut microbiota influences anticancer immunosurveillance and general health. Nat Rev Clin Oncol. 2018 Jun;15(6):382-396. 
  • Galluzzi L, Yamazaki T, Kroemer G. Linking cellular stress responses to systemic homeostasis. Nat Rev Mol Cell Biol. 2018 Nov;19(11):731-745. 
  • Lopez-Otin C, Kroemer G. Decelerating aging and biological clocks by autophagy. Nat Rev Mol Cell Biol. 2019 Jul;20(7):385-386.
  • Kepp O, Marabelle A, Zitvogel L, Kroemer G. Oncolysis without viruses: local treatments for inducing systemic anticancer immune responses. Nat Rev Clin Oncol. 2020 Jan;17(1):49-64.
  • Madeo F, Hofer SJ, Pendl T, Bauer MA, Eisenberg T, Carmona-Gutierrez D, Kroemer G. Nutritional Aspects of Spermidine. Annu Rev Nutr. 2020 Oct;27(10):2904-2920.
  • Galluzzi L, Humeau J, Buqué A, Zitvogel L, Kroemer G. Immunostimulation with chemotherapy in the era of immune checkpoint blockers. Nat Rev Clin Oncol. 2020 Dec;17(12):725-741. 
  • Chen X, Kang R, Kroemer G, Tang D. ( Corresponding author) Broadening horizons: the role of ferroptosis in cancer. Nat Rev Clin Oncol. 2021 May;18(5):280-296. 
  • Zitvogel L, Perreault C, Finn O, Kroemer G. Beneficial autoimmunity improves cancer prognosis. Nat Rev Clin Oncol. 2021 Sep;18(9):591-602. 
  • Chen X, Kang R, Zeh H, Kroemer G , Tang D. ( Corresponding author). Cell death in pancreatic cancer: from pathogenesis to therapy. Nat Rev Gastroenterol Hepatol. 2021 Nov;18(11):804-823.
  • Thomas AM, Fidelle M, Kroemer G, Routy B, Wargo JA, Segata N, Zitvogel L. Gut OncoMicrobiome Signatures as next generation biomarkers for cancer immunotherapy. Nat Rev Clin Oncol. In press
  • Ma Y, Kroemer G. The cancer-immune dialogue in the context of stress. Nat Rev Immunol. In press

 

 

 


14

14

14 

14

14

14

14

14

14

14

 

among others